Structural Adaptation and Antioxidant Response of Guarianthe bowringiana (O’Brien) Dressler & W. E. Higgins (Orchidaceae Juss.) Seedlings During Ex Vitro Acclimatization

Lyudmyla Buyun, Roman Ivannikov, Lyudmila Batsmanova, Nataliya Taran, Lyudmyla Kovalska, Ivan Gurnenko, Myroslava Maryniuk

Abstract


Guarianthe bowringiana is one of the oldest samples cultivated at NBG’s orchid unit glasshouses since 1970s. An efficient protocol for asymbiotic in vitro seed germination of G. bowringiana has previously been established. Given that acclimatization is a crucial step in micropropagation, this study assesses the structural adaptation and antioxidant response of G. bowringiana seedlings during ex vitro acclimatization to ex vitro conditions.

The leaf surface micromorphology of the G. bowringiana juvenile plants propagated in vitro from seeds as well as the leaves of adult plants cultivated in glasshouse were analyzed using scanning electron microscopy. The levels of lipid peroxidation (TBARS level), superoxide dismutase (SOD) activity, and the photosynthetic activity were monitored for seven days from the transfer of seedlings from the in vitro cultivation vessels as they are markers indicating the response of the leaves of in vitro propagated G. bowringiana plants to oxidative stress during the early stages of acclimatization to ex vitro conditions. During the initial 2 days of the monitored acclimatization period (0–7 days), the level of photosynthetic pigments (chlorophyll a, b, and carotenoid content) increased, followed by an insignificant increase during the successive period (by the seventh day) of acclimatization. At the same time, the level of the tested antioxidant enzyme (SOD) exhibited an increasing trend throughout the acclimatization period. The SOD activities in the leaves of G. bowringiana seedlings were significantly affected when they were transferred from in vitro to ex vitro conditions due to drought stress.

Thus, it was revealed that in the early stages of acclimatizing to the altered environments, G. bowringiana seedlings exhibited a rapid increase in photosynthetic pigments, superoxide dismutase activity, and lipid peroxidation levels after being transferred to ex vitro conditions.

Comparison of the leaf micromorphologies of G. bowringiana plants grown under in vitro and those grown under ex vitro conditions revealed that leaf development had undergone significant changes during acclimatization to the altered conditions. In vitro to ex vitro transfer leads to a transient decrease in photosynthetic parameters.


Keywords


abiotic stress; acclimatization; lipid peroxidation; oxidative stress; antioxidant systems; stomata; leaf micromorphology

Full Text:

PDF XML (JATS)

References


Ahmed, M. R., & Anis, M. (2014). Changes in activity of antioxidant enzymes and photosynthetic machinery during acclimatization of micropropagated Cassia alata L. plantlets. In Vitro Cellular and Developmental Biology – Plant, 50, 601–609. https://doi.org/10.1007/s11627-014-9609-1

Arnold, P. A., Kruuk, L. E., & Nicotra, A. B. (2019). How to analyse plant phenotypic plasticity in response to a changing climate. New Phytologist, 222(3), 1235–1241. https://doi.org/10.1111/nph.15656

Astarini, I. A., Claudia, V., Adi, N. K. A. P., Sudirga, S. K., & Astiti, N. P. A. (2015). In vitro propagation and acclimatization of black orchid (Coelogyne pandurata Lindl.). Acta Horticulturae, 1078, 155–158. https://doi.org/10.17660/ActaHortic.2015.1078.21

Ávila-Díaz, I., Oyama, K., Gómez-Alonso, C., & Salgado-Garciglia, R. (2009). In vitro propagation of the endangered orchid Laelia speciosa. Plant Cell, Tissue and Organ Culture, 99, Article 335. https://doi.org/10.1007/s11240-009-9609-8

Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, Article 360438. https://doi.org/10.1155/2014/360438

Bailly, C., Benamar, A., Corbineau, F., & Dôme, D. (1996). Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seed as related to deterioration during accelerated aging. Physiologia Plantarum, 97, 104–110. https://doi.org/10.1111/j.1399-3054.1996.tb00485.x

Бацманова [Batsmanova], Л. М. [L. M.], Буюн [Buiun], Л .І. [L. I.], Ковальська [Koval′ s′ka], Л. А. [L. A.], & Таран [Taran], Н. Ю. [N. Iu.]. (2008). Про-антиоксиданти листків деяких видів тропічних орхідних за низькотемпературної адаптації [Pro-antioxidants in leaves of some species of tropical orchids under conditions of low-temperature adaptations]. Український ботанічний журнал [Ukrainian Botanical Journal], 65(6), 912–921.

Bose, B., Kumaria, S., Choudhury, H., & Tandon, P. (2017). Insights into nuclear DNA content, hydrogen peroxide and antioxidative enzyme activities during transverse thin cell layer organogenesis and ex vitro acclimatization of Malaxis wallichii, a threatened medicinal orchid. Physiology and Molecular Biology of Plants, 23(4), 955–968. https://doi.org/10.1007/s12298-017-0474-3

Буюн [Buiun], Л. [L.]. (2013). Адаптивні зміни поверхні листка тропічної орхідеї Cattleya gaskelliana (N. E. Br.) D. S. Williams при зміні умов культивування (in vitro → ex vitro) [Adaptative changes of leaf surface of tropical orchid Cattleya gaskelliana (N. E. Br.) Williams after transferring from in vitro to ex vitro conditions]. Modern Phytomorphology, 3, 235–238.

Buyun, L., Gaidarzhy, M., & Prokopiv, A. (2020). Living collections of tropical plants as national heritage collections of Ukraine. In M. D. Espírito-Santo, A. L. Soares, & M. Veloso (Eds.), Botanic gardens, people and plants for a sustainable world (pp. 105–113). IsaPress.

Buyun, L., Lavrentyeva, A., Kovalska, L., & Ivannikov, R. (2004). In vitro germination of seeds of some rare tropical orchids. Acta Universitatis Latviensis, Biology, 676, 159–162.

Cha-um, S., Puthea, O., & Kirdmanee, C. (2009). An effective in-vitro acclimatization using uniconazole treatments and ex-vitro adaptation of Phalaenopsis orchid. Scientia Horticulturae, 121, 468–473. https://doi.org/10.1016/j.scienta.2009.02.027

Cherevchenko, T. M., Buyun, L. I., Kovalska, L. A., & Long, V. N. (2007). Ex situ conservation of tropical orchids in Ukraine. Lankesteriana, 7(1–2), 129–133. https://doi.org/10.15517/lank.v7i1-2.18451

Choudhury, N. K., & Behera, R. K. (2001). Photoinhibition of photosynthesis: Role of carotenoids in photoprotection of chloroplast constituents. Photosynthetica, 39(4), 481–488. https://doi.org/10.1023/A:1015647708360

Convention on International Trade in Endangered Species of Wild Fauna and Flora Appendices I, II and III. (2020). https://cites.org/sites/default/files/eng/app/2020/E-Appendices-2020-08-28.pdf

Coutiño-Cortés, A. G., Bertolini, V., Iracheta-Donjuan, L., Ruiz-Montoya, L., & Valle-Mora, J. F. (2017). In vitro callogenesis induction of Guarianthe skinneri (Bateman) Dressler & W. E. Higgins (Orchidaceae). Acta Agronomica, 66(2), 254–259. https://doi.org/10.15446/acag.v66n2.57982

da Silva, J. M., Jr., Rodrigues, M., de Castro, E. M., Kelly, S., Bertolucci, S. K. V., & Pasqual, M. (2013). Changes in anatomy and chlorophyll synthesis in orchids propagated in vitro in the presence of urea. Acta Scientiarum, Agronomy, 35(1), 65–72. https://doi.org/10.4025/actasciagron.v35i1.15356

de Fario, R. T., Rodrigues, F. N., Oliveira, L. V. R., & Müller, C. (2004). In vitro Dendrobium nobile plant growth and rooting in different sucrose concentrations. Horticultura Brasileira, 22(4), 780–783. https://doi.org/10.1590/S0102-05362004000400023

Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism & Cardiovascular Diseases, 15, 316–328. https://doi.org/10.1016/j.numecd.2005.05.003

Díaz-Álvarez, E. A., Torres-Galeano, C., Rojas-Cortés, A. P., & de la Barrera, E. (2015). In-vitro germination and development of two endangered endemic Colombian orchids, Cattleya mendelii and Cattleya quadricolor. Gayana Botánica, 72, 303–310. https://doi.org/g779

Dressler, R., & Higgins, W. (2003). Guarianthe, a generic name for the “Cattleya” skinneri complex. Lankesteriana, 7(2), 37–38. https://doi.org/10.15517/lank.v3i2.23009

Dressler, R., Pridgeon, A., & Veitch, N. C. (2005). 302. Guarianthe. In A. M. Pridgeon, P. J. Cribb, M. W. Chase, & F. N. Rasmussen (Eds.), Genera Orchidacearum, Vol. 4. Epidendroideae (Part 1) (pp. 251–254). Oxford University Press.

Eslami Fard, S., Yarnia, M., Farahvash, F., Khalilvand Behrouzyar, E., & Rashidi, V. (2020). Arbuscular mycorrhizas and phosphorus fertilizer affect photosynthetic capacity and antioxidant enzyme activity in peppermint under different water conditions. Acta Agrobotanica, 73(4), Article 7345. https://doi.org/10.5586/aa.7345

Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59(2), 309–314. https://doi.org/10.1104/pp.59.2.309

Gravendeel, B., Smithson, A., & Slik, F. J. W. (2004). Epiphytism and pollinator specialization: Drivers for orchid diversity? Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 359(1450), 1523–1535. https://doi.org/10.1098/rstb.2004.1529

Guarianthe bowringiana (O’Brien) Dressler & W. E. Higgins. (2021). World Checklist of Selected Plant Families. Retrieved September 3, 2021, from https://wcsp.science.kew.org/namedetail.do?name_id=247365.

Gudiño, W., Ávila-Díaz, I., Oyama, K., & de la Barrera, E. (2015). High-temperature tolerance by the endangered Mexican Mayflower orchid, Laelia speciosa. Tropical Conservation Science, 8(4), 983–991. https://doi.org/10.1177/194008291500800408

Gupta, S. D., & Datta, S. (2003). Antioxidant enzyme activities during in vitro morphogenesis of gladioulus and the effect of application of antioxidants on plant regeneration. Biologia Plantarum, 47(2), 179–183. https://doi.org/bjvtkg

Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. https://doi.org/10.3390/antiox9080681

Hassankhah, A., Vahdati, K., Lotfi, M., Mirmasoumi, M., Preece, J., & Assareh, M.-H. (2014). Effects of ventilation and sucrose concentrations on the growth and plantlet anatomy of micropropagated persian walnut plants. International Journal of Horticultural Science and Technology, 1(2), 111–120.

Hazarika, B. N. (2003). Acclimatization of tissue-cultured plants. Current Science, 85(12), 1704–1712.

Hazarika, B. N. (2006). Morpho-physiological disorders in in vitro culture of plants. Scientia Horticulturae, 108(2), 105–120. https://doi.org/10.1016/j.scienta.2006.01.038

Hinsley, A., de Boer, H. J., Fay, M. F., Gale, S. W., Gardiner, L. M., Gunasekara, R. S., Kumar, P., Masters, S., Metusala, D., Roberts, D. L., Veldman, S., Wong, S., & Phelps, J. (2017). A review of the trade in orchids and its implications for conservation. Botanical Journal of the Linnean Society, 186(4), 435–455. https://doi.org/10.1093/botlinnean/box083

International Union for Conservation of Nature. (2017). Guidelines for Using the IUCN Red List Categories and Criteria, Version 13. https://www.iucnredlist.org/resources/redlistguidelines/

Іванніков [Ivannikov], Р. В. [R. V.]. (2012). Репродукційна біологія орхідних in vitro [Reproductive biology of orchids in vitro] [Unpublished doctoral dissertation]. Національний ботанічний сад імені М. М. Грищка НАН України [M. M. Gryshko National Botanic Garden, NAS of Ukraine].

Jeon, M.-W., Ali, M. B., Hahn, E.-J., & Paek, K.-Y. (2006). Photosynthetic pigments, morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature. Environmental and Experimental Botany, 55(1–2), 183–194. https://doi.org/10.1016/j.envexpbot.2004.10.014

Kozai, T., Iwabuchi, K., Watanabe, K., & Watanabe, I. (1991). Photoautotrophic and photomixotrophic growth of strawberry plantlets in vitro and changes in nutrient composition of the medium. Plant Cell, Tissue and Organ Culture, 25, 107–115.

Kumar, G., & Knowles, N. R. (1993). Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiology, 102(1), 115–124. https://doi.org/10.1104/pp.102.1.115.30

Kumaria, S., & Tandon, P. (2000). Effect of growth regulators on peroxidase, polyphenol oxidase, and IAA-oxidase activities and phenolic contents during protocorm development of Dendrobium fimbriatum var. oculatum Hook. f. The Journal of the Orchid Society of India, 14, 27–39.

Kumaria, S., Chrungoo, N. K., & Tandon, P. (1990). Activities of some oxidative enzymes in axenic cultures of protocorms of Cymbidium giganteum Wall. as influenced by different growth regulators. The Journal of the Orchid Society of India, 4, 37–44.

Lando, A. P., Wolfart, M. R., Fermino, P. C. P., & Santos, M. (2016). Structural effects on Cattleya xanthina leaves cultivated in vitro and acclimatized ex vitro. Biologia Plantarum, 60, 219–225. https://doi.org/10.1007/s10535-016-0589-3

Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K.-J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants (Basel), 8(4), Article 94. https://doi.org/10.3390/antiox8040094

Lesar, H., Hlebec, B., Čeranič, N., Kastelec, D., & Luthar, Z. (2012). Acclimatization of terrestrial orchid Bletilla striata Rchb. f. (Orchidaceae) propagated under in vitro conditions. Acta Agriculturae Slovenica, 99(1), 69–75. https://doi.org/10.2478/v10014-012-0001-8

Li, J., Matsui, S., & Onwona-Agyeman, S. (2001). Effects of cultural temperatures on antioxidative levels in leaves of Cattlea hybrid and Cymbidium hybrid. Environmental Control in Biology, 39, 1–7. https://doi.org/10.2525/ecb1963.39.1

Li, Y., Imai, K., Ohno, H., & Matsui, S. (2004). Effects of acclimatization temperatures on antioxidant enzyme activities in mericlones of a Cattleya hybrid. Journal of the Japanese Society for Horticultural Science, 73, 386–392. https://doi.org/10.2503/jjshs.73.386

Mondragón, D. (2009). Population viability analysis for Guarianthe aurantiaca, an ornamental epiphytic orchid harvested in Southeast Mexico. Plant Species Biology, 24(1), 35–41. https://doi.org/10.1111/j.1442-1984.2009.00230.x

Monforte, A. J. (2020). Time to exploit phenotypic plasticity. Journal of Experimental Botany, 71(18), 5295–5297. https://doi.org/10.1093/jxb/eraa268

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497. https://doi.org/dh6dj8

Ortega-Loeza, M. M., Salgado-Garciglia, R., Gómez-Alonso, C., & Ávila-Díaz, I. (2011). Acclimatization of the endangered Mexican epiphytic orchid, Laelia speciosa (H. B. K.) Schltr. European Journal of Environmental Sciences, 1(2), 48–54.

Pautov, A., Bauer, S., Ivanova, O., Krylova, E., Sapach, Y., & Gussarova, G. (2017). Role of the outer stomatal ledges in the mechanics of guard cell movements. Trees, 31, 125–135. https://doi.org/10.1007/s00468-016-1462-x

Pitoyo, A., Hani, M. R., & Anggarwulan, E. (2015). Application of chitosan spraying on acclimatization success of tiger orchid (Grammatophyllum scriptum) plantlets. Nusantara Bioscience, 7, 179–185. https://doi.org/10.13057/nusbiosci/n070222

Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equation for assaying chlorophyll a and b with four different solvents: Verification of the concentration of chlorophyll by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 975, 384–394. https://doi.org/cjrxr6

Pospíšilová, J., Synková, H., Haisel, D., & Semorádová, Š. (2007). Acclimatization of plantlets to ex vitro conditions: Effects of air humidity, irradiance, CO2 concentration and abscisic acid (a review). Acta Horticulturae, 748, 29–38. https://doi.org/10.17660/ActaHortic.2007.748.2

Prasad, T. K., Anderso, M. D., Martin, B. A., & Steward, C. R. (1994). Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 6, 65–74. https://doi.org/10.2307/3869675

Selye, H. (1950). Stress: The physiology and pathology of exposure to stress. ACTA Publications.

Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, Article 217037. https://doi.org/10.1155/2012/217037

Stefanova, M. A., & Koleva, D. P. (2014). Leaf ’s structural response of in vitro cultured Leonurus cardiaca plants to N6 -benzyladenine and indole-3-butyric acid. Journal of Pharmacy Research, 8, 1014–1021.

Stern, W. L., & Carlsward, B. S. (2009). Comparative vegetative anatomy and systematics of Laeliinae (Orchidaceae). Botanical Journal of the Linnean Society, 160, 21–41. https://doi.org/10.1111/j.1095-8339.2009.00818.x

Teixeira da Silva, J. A., Hossain, M. M., Sharma, M., Dobranszki, J., Cardoso, J. C., & Zeng, S. (2017). Acclimatization of in vitro-derived Dendrobium. Horticultural Plant Journal, 3(3), 110–124. https://doi.org/10.1016/j.hpj.2017.07.009

Ticktin, T., Mondragon, D., Lopez-Toledo, L., Dutra-Elliot, D., Aguirre-Leon, E., & Hernandez-Apolinar, M. (2020). Synthesis of wild orchid trade and demography provides new insight on conservation strategies. Conservation Letters, 13, Article e12697. https://doi.org/10.1111/conl.12697

Torres, J., Laskowski, L., & Sanabria, M. (2006). Efecto del ambiente de desarrollo sobre la anatomía de la epidermis foliar de Cattleya jenmanii Rolfe [Environmental effect during growth on anatomical characteristics of leaf epiderm in Cattleya jenmanii Rolfe]. Bioagro, 18(2), 93–99.

Torres, J. A., & Sanabria, M. (2011). Effect of the development environment on the leaf anatomy of Cattleya jenmanii Rolfe and C. lueddemanniana Rchb. f. (Orchidaceae). Acta Botanica Venezuelica, 34(1), 199–214.

van den Berg, C., Higgins, W. E., Dressler, R. L., Whitten, W. M., Soto Arenas, M. A., Culham, A., & Chase, M. W. (2000). A phylogenetic analysis of Laeliinae (Orchidaceae) based on sequence data from internal transcribed spacers (ITS) of nuclear ribosomal DNA. Lindleyana, 15, 96–114.

Wettstein, D. (1957). Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden [Chlorophyll lethals and submicroscopic morphological changes in plastids]. Experimental Cell Research, 12(3), 427–433. https://doi.org/10.1016/0014-4827(57)90165-9

Woodward, F. I., & Williams, B. G. (1987). Climate and plant distribution at global and local scales. Vegetatio, 69, 189–197. https://doi.org/10.1007/BF00038700

Zhang, W., Hu, H., & Zhang, S.-B. (2016). Divergent Adaptive strategies by two co-occurring epiphytic orchids to water stress: Escape or avoidance? Frontiers in Plant Science, 7, Article 588. https://doi.org/10.3389/fpls.2016.00588




DOI: https://doi.org/10.5586/aa.7422

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society