Leaf Anatomical Adaptation Under Early Drought Stress of Sugarcane Cultivars – KKU-1999-02 and KKU-1999-03

Worasitikulya Taratima, Thapakorn Ritmaha, Nakorn Jongrungklang, Pitakpong Maneerattanarungroj

Abstract


Anatomical adaptation is an important feature that allows plants to mitigate drought stress. A comparative leaf anatomy of two drought-tolerant sugarcane cultivars, KKU-1999-02 and KKU-1999-03, was studied in early drought stress between 30 and 90 days after planting using peeling and freehand sectioning methods. KKU-1999-02 and KKU-1999-03 showed different anatomical adaptation features, such as increase in cuticle thickness, bulliform cell size, vascular bundle, and stomatal density, and decreases in leaf thickness and stomatal size. KKU-1999-02 showed more remarkable anatomical changes than KKU-1999-03. The results provide important information that can be applied in combination with other agronomic traits in sugarcane breeding programs to expand the adaptation devices of tolerant cultivars under preliminary drought stress.

Keywords


anatomical structure; breeding scheme; drought impact; leaf tissue; Saccharum spp.; water deficit

Full Text:

PDF XML (JATS)

References


Abbas, R. S., Ahmad, D. S., Sabir, M. S., & Shah, H. A. (2014). Detection of drought tolerant sugarcane genotypes (Saccharum officinarum) using lipid peroxidation, antioxidant activity, glycine-betaine and proline contents. Journal of Soil Science and Plant Nutrition, 14, 233–243. https://doi.org/10.4067/S0718-95162014005000019

Bajji, M., Lutts, S., & Kinet, J. M. (2000). Physiological changes after exposure to and recovery from polyethylene glycol-induced water deficit in callus cultures issued from durum wheat (Triticum durum Desf.) cultivars differing in drought resistance. Journal of Plant Physiology, 156, 75–83. https://doi.org/10.1016/S0176-1617(00)80275-8

Boaretto, L. F., Carvalho, G., Borgo, L., Creste, S., Landell, M. G. A., Mazzafera, P., & Azevedo, R. A. (2014). Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugar cane genotypes. Plant Physiology and Biochemistry, 74, 165–175. https://doi.org/10.1016/j.plaphy.2013.11.016

Bosabalidis, A. M., & Kofidis, A. (2002). Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science, 163, 375–379. https://doi.org/10.1016/S0168-9452(02)00135-8

Boughalleb, F., Abdellaoui, R., Ben-Brahim, N., & Neffati, M. (2014). Anatomical adaptations of Astragalus gombiformis Pomel. under drought stress. Central European Journal of Biology, 9, 1215–1225. https://doi.org/10.2478/s11535-014-0353-7

Da Cruz Maciel, R. J., De Oliveira, D., Fadin, A. D., Sajo, G. M., & Pedroso-De-Moraes, C. (2015). Morpho-anatomical characteristics conferring drought tolerance in roots of sugar cane genotypes (Saccharum L., Poaceae). Brazilian Journal of Botany, 38, 951–960. https://doi.org/10.1007/s40415-015-0191-5

David, O. A., Osonubi, O., Olaiya, C. O., Agbolade, J. O., Ajiboye, A. A., Komolafe, R. J., Chukwuma, D. M., & Akomolafe, G. F. (2017). Anatomical response of wheat cultivars to drought stress. Ife Journal of Science, 19, 323–331. https://doi.org/10.4314/ijs.v19i2.12

De Micco, V., & Aronne, G. (2012). Occurrence of morphological and anatomical adaptive traits in young and adult plants of the rare Mediterranean cliff species Primula palinuri Petagna. The Scientific World Journal, 2012, Article 471814. https://doi.org/10.1100/2012/471814

Du, Y.-C., Nose, A., Wasano, K., & Uchida, Y. (1998). Responses to water stress of enzyme activities and metabolite level in relation sucrose and starch synthesis, the Calvin cycle and the C4 pathway in sugarcane (Saccharum sp.) leaves. Australian Journal of Plant Physiology, 22, 253–260. https://doi.org/10.1071/PP97015

Garcia, H. S. F., Mendonca, M. C. A., Rodrigues, M., Matias, I. F., Filho, S. P. M., Santos, B. R. H., Taffner, J., & Barbosa, P. R. A. D. (2019). Water deficit tolerance in sugarcane is dependent on the accumulation of sugar in the leaf. Annals of Applied Biology, 176, 65–74. https://doi.org/10.1111/aab.12559

Jangpromma, N., Kitthaisong, S., Lomthaisong, K., Daduang, S., Jaisil, P., & Thammasirirak, S. (2010). A proteomics analysis of drought stress-responsive proteins as biomarker for drought-tolerant sugar cane cultivars. American Journal of Biochemistry and Biotechnology, 6, 89–102. https://doi.org/10.3844/ajbbsp.2010.89.102

Jangpromma, N., Thammasirirak, S., Jaisil, P., & Songsri, P. (2012). Effects of drought and recovery from drought stress on above ground and root growth, and water use efficiency in sugarcane (Saccharum officinarum L.). Australian Journal of Crop Science, 6, 1298–1304.

Johansen, A. D. (1940). Plant microtechnique. McGraw-Hill.

Junior, M. O. S., Andrade, R. J., Santos, M. C., Silva, C. A. J., Santos, O. P. K., Silva, V. J., & Endres, L. (2019). Leaf thickness and gas exchange are indicators of drought stress tolerance of sugarcane. Emirates Journal of Food and Agriculture, 31, 29–38. https://doi.org/10.9755/ejfa.2019.v31.i1.1897

Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., & Sharma, A. (2020). The impact of drought in plant metabolism: How to exploit tolerance mechanismsincrease crop production. Applied Sciences, 10, Article 5692. https://doi.org/10.3390/app10165692

Khonghintaisong, J. (2018). Physiological characteristics involved with tiller development to millable cane and responses of rooting and physiological traits to early season drought conditions in sugarcane [Unpublished master’s thesis]. Faculty of Agriculture, Khon Kaen University.

Khonghintaisong, J., Khruengpatee, J., Songsri, P., Gonkhamdee, S., & Jongrungklang, N. (2020). Classification of the sugar accumulation patterns in diverse sugarcane cultivars under rain-fed conditions in a tropical area. Journal of Agronomy, 19, 94–105. https://doi.org/10.3923/ja.2020.94.105

Khonghintaisong, J., Songsri, P., & Jongrungklang, N. (2020). Root characteristics of individual tillers and the relationships with above-ground growth and dry matter accumulation in sugarcane. Pakistan Journal of Botany, 52, 101–109. https://doi.org/10.30848/PJB2020-1(35)

Laclau, P. B., & Laclau, J. P. (2009). Growth of the whole root system for a plant crop of sugarcane under rainfed and irrigated environments in Brazil. Field Crops Research, 114, 351–360. https://doi.org/10.1016/j.fcr.2009.09.004

Machado, R. S., Ribeiro, R. V., Marchiori, P. E. R., Machado, D. F. S. P., Machado, E. C., & Landell, M. G. A. (2009). Respostas biométricas e fisiológicas ao deficit hídrico em cana-de-açúcar em diferentes fases fenológicas [Biometric and physiological responses to water deficit in sugarcane at different phenological stages]. Pesquisa Agropecuária Brasileira, 44, 1575–1582. https://doi.org/10.1590/S0100-204X2009001200003

Macneill, G. J., Mehrpouyan, S., Minow, M. A. A., Patterson, J. A., Tetlow, I. J., & Emes, M. (2017). Starch as a source, starch as a sink: The bifunctional role of starch in carbon allocation. Journal of Experimental Botany, 68, 4433–4453. https://doi.org/10.1093/jxb/erx29

Malinowski, D. P., & Belesky, D. P. (2019). Epichloë (formerly Neotyphodium) fungal endophytes increase adaptation of cool-season perennial grasses to environmental stresses. Acta Agrobotanica, 72(2), Article 1767. https://doi.org/10.5586/aa.1767

Mauri, R., Coelho, D. R., Feaga Junior, F. E., Barbosa, S. D. F., & Leal, P. V. D. (2017). Water relations at the initial sugarcane growth phase under variable water deficit. Engenharia Agrícola, 37, 268–276. https://doi.org/g8mw

Medeiros, D. B., Silva, E. C., Nogueira, R. J. M. C., Teuxeira, M. M., & Buckeridge, M. S. (2013). Physiological limitations in two sugarcane varieties under water suppression and after recovering. Theoretical and Experimental Plant Physiology, 25, 213–222. https://doi.org/10.1590/S2197-00252013000300006

Nautiyal, P. C., Nageswara Rao, R. C., & Joshi, Y. C. (2002). Moisture-deficit induced changes in leaf water content, leaf carbon exchange rate and biomass production in groundnut cultivars differing in specific leaf area. Field Crops Research, 74, 67–79. https://doi.org/10.1016/S0378-4290(01)00199-X

Nawazish, S., Hameed, M., & Naurin, S. (2006). Leaf anatomical adaptations of Cenchrus ciliaris L., from the Salt Range, Pakistan against drought stress. Pakistan Journal of Botany, 38, 1723–1730.

Pinto, C. A., David, J. S., Cochard, H., Caldeira, M. C., Henriques, M. O., Quilhó, T., Paço, T. A., Pereira, J. S., & David, T. S. (2012). Drought-induced embolism in current-year shoots of two Mediterranean evergreen oaks. Forest Ecology and Management, 285, 1–10. https://doi.org/10.1016/j.foreco.2012.08.005

Pittermann, J. (2010). The evolution of water transport in plants: An integrated approach. Geobiology, 8, 112–139. https://doi.org/10.1111/j.1472-4669.2010.00232.x

Qaderi, M. M., Martel, B. A., & Dixon, L. S. (2019). Environmental factors influence plant vascular system and water regulation. Plants, 8, Article 65. https://doi.org/10.3390/plants8030065

Robertson, M. J., Muchow, R. C., Donalson, R. A., Inman-Bamber, N. G., & Wood, A. W. (1999). Estimating the risk associated with drying-off strategies for irrigated sugarcane before harvest. Australian Journal of Agricultural Research, 50, 65–77. https://doi.org/10.1071/A98051

Santillán-Fernández, A., Santoyo-Cortes, H. V., Garcia-Chavez, R. L., Covarrubias-Gutierrez, I., & Merino, A. (2016). Influence of drought and irrigation on sugarcane yields in different agroecoregions in Mexico. Agricultural Systems, 143, 126–135. https://doi.org/10.1016/j.agsy.2015.12.013

Schoonees, B. M. (2004). Starch hydrolysis using α-amylase: A laboratory evaluation using response surface methodology. Proceedings of The South African Sugar Technologists’ Association, 78, 427–440.

Shao, H. B., Chu, L. Y., Jaleel, C. A., & Zhao, C. Z. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331, 215–225. https://doi.org/10.1016/j.crvi.2008.01.002

Shivalingamurthy, S. G., Anangi, R., Kalaipandian, S., Glassop, D., King, G. F., & Rae, A. L. (2018). Identification and functional characterization of sugarcane invertase inhibitor (ShINH1): A potential candidate for reducing pre- and post-harvest loss of sucrosesugarcane. Frontiers in Plant Science, 9, Article 598. https://doi.org/10.3389/fpls.2018.00598

Showler, T. A. (2016). Selected abiotic and biotic environmental stress factors affecting two economically important sugarcane stalk boring pests in the United States. Agronomy, Article 10. https://doi.org/10.3390/agronomy6010010

Taratima, W., Ritmaha, T., Jongrungklang, N., Maneerattanarungroj, P., & Kunpratum, N. (2020). Effect of stress on the leaf anatomy of sugarcane cultivars with different drought tolerance (Saccharum officinarum, Poaceae). Revista de Biología Tropical, 68, 1159–1170. https://doi.org/10.15517/rbt.v68i4.41031

Taratima, W., Ritmaha, T., Jongrungklang, N., Raso, S., & Maneerattanarungroj, P. (2019). Leaf anatomical responses to drought stress condition in hybrid sugarcane leaf (Saccharum officinarum ‘KK3’). Malaysian Applied Biology, 48, 180–188.

Terletskaya, N., & Kurmanbayeva, M. (2017). Change in leaf anatomical parameters of different wheat species conditions of drought and salt stress. Pakistan Journal of Botany, 49, 857–865.

Thalmann, M., & Santelia, D. (2017). Starch as a determinant of plant fitness under abiotic stress. New Phytologist, 214, 943–951. https://doi.org/10.1111/nph.14491

Trentin, R., Zolnier, S., Ribeiro, S., & Steidle Neto, A. J. (2011). Transpiração e temperatura foliar da cana-de-açúcar sob diferentes valores de potencial matricial [Transpiration and leaf temperature of sugarcane under different matric potential values]. Engenharia Agrícola, 31, 1085–1095. https://doi.org/10.1590/S0100-69162011000600006

Trujillo, I., Rivas, M., & Castrillo, M. (2013). Leaf recovery responses during rehydration after water deficit in two bean (Phaseolus vulgaris L.) cultivars. Journal of Plant Interactions, 8, 360–369. https://doi.org/10.1080/17429145.2012.754959

Van-Ittersum, M. K., & Rabbinge, R. (1997). Concepts in production ecology for analysisquantification of agricultural input–output combinations. Field Crop Research, 52, 197–208. https://doi.org/10.1016/S0378-4290(97)00037-3

Vargas, L., Santa Brigida, A. B., Mota Filha, J. P., De Carvalho, T. G., Rojas, C. A., Vaneechouttle, D., Vanbel, M., Farrinelli, L., Ferreira, P. C., Vandepoele, K., & Hemerly, A. S. (2014). Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: A transcriptomic view of hormone pathways. PLoS ONE, 9, Article e114744. https://doi.org/10.1371/journal.pone.0114744

Wiedenfeld, R. P. (2000). Water stress during different sugar cane growth periods on yieldresponse to N fertilization. Agricultural Water Management, 43, 173–182. https://doi.org/10.1016/S0378-3774(99)00053-0

Zhang, F.-J., Zhang, K.-K., Du, C.-Z., Li, J., Xing, Y.-X., Yang, L.-T., & Li, Y.-R. (2015). Effectdrought stress on anatomical structure and chloroplast ultrastructure in leaves of sugar cane. Sugar Tech, 17, 41–48. https://doi.org/10.1007/s12355-014-0337-y

Zhu, Y. J., Komor, E., & Moore, P. H. (1997). Sucrose accumulation in the sugarcane stemregulated by the difference between the activities of soluble acid invertase and sucrose phosphate synthase. Plant Physiology, 115, 609–616. https://doi.org/10.1104/pp.115.2.609

Zwieniecki, M. A., & Secchi, F. (2015). Threats to xylem hydraulic function of trees under “new climate normal” conditions. Plant, Cell and Environment, 38, 1713–1724. https://doi.org/10.1111/pce.12412




DOI: https://doi.org/10.5586/aa.7419

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society