Preservation of Features of Anatomical Polymorphism of Deschampsia antarctica É. Desv. (Poaceae) During In Vitro Clonal Reproduction

Nataliia Nuzhyna, Viktor Kunakh, Oksana Poronnik, Ivan Parnikoza

Abstract


We studied the anatomical features of the leaf structure of Deschampsia antarctica É. Desv. (Poaceae) obtained from seeds collected from different habitats of the maritime Antarctic. These plants have been maintained in culture in vitro for more than 7 years. The plants include stable chromosome forms comprising diploids (2n = 26), a diploid plant with B-chromosomes (2n = 26 + 0–3B), a triploid with rearranged chromosome morphology, and myxoploids with different ratios of diploid and nondiploid cells in the root meristem. The D. antarctica plants that were studied generally had a similar anatomical structure in culture in vitro and in nature. At the same time, plants of different cultivated genotypes also displayed their own leaf structure features. In particular, qualitative features included asymmetric four-ribs and five-rib leaves instead of typical three-rib leaves for some genotypes, some individuals characterized by the presence of unicellular nonglandular pointed trichomes on an adaxial side, differences in vascular bundle sheath, and other features. No clear dependence of the anatomical structural features on the chromosomal status of the studied genotypes was evident. At the same time, differences were evident in traits that included the number of stomata, thickness of the outer cell walls of the epidermis, bundles sheath state, number of leaf ribs, and the persistent presence of trichomes under prolonged in vitro cloning. The findings indicate that D. antarctica plants collected from different locations of the maritime Antarctic for long-term cultivation in vitro under standard cultivation conditions retain the anatomical characteristics of the wild plants. The polymorphism of in vitro-cultivated plants is not related to the polymorphism of their karyotype, but is apparently due to the heterogeneity of the original plants and possibly the epigenetic fixation of a number of anatomical features produced in the natural microhabitats of D. antarctica populations.

Keywords


Antarctic hairgrass; different growth habitats; leaf structure; genetic diversity; adaptation

Full Text:

PDF XML (JATS)

References


Alvarez, J. M., Rocha, J. F., & Machado, S. R. (2008). Bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees (Poaceae): Structure in relation to function. Brazilian Archives of Biology and Technology, 51(1), 113–119. https://doi.org/10.1590/S1516-89132008000100014

Androsiuk, P., Chwedorzewska, K. J., Dulska, J., Milarska, S., & Giełwanowska, I. (2021). Retrotransposon-based genetic diversity of Deschampsia antarctica Desv. from King George Island (Maritime Antarctic). Ecology and Evolution, 11(1), 648–663. https://doi.org/10.1002/ece3.7095

Beerling, D. J., & Kelly, C. K. (1996). Evolutionary comparative analyses of the relationship between leaf structure and function. New Phytologist, 134, 35–51. https://doi.org/10.1111/j.1469-8137.1996.tb01144.x

Gidekel, M., Weber, H., Cabrera, G., Gutiérrez, A., Osorio, J., Podhajcer, O., Cafferata, E., Sunkel, C., & Mihovilovic, I. (2011). Extracts of Deschampsia antarctica Desv. with antineoplastic activity (U.S. Patent No. 20110177178). Uxmal SA Chile.

Giełwanowska, I. (2005). Specyfika rozwoju antarktycznych roślin naczyniowych Colobanthus quitensis (Kunth) Bartl. i Deschampsia antarctica Desv. [Unique features of development in the Antarctic vascular plants Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv.]. UWM.

Giełwanowska, I., Szczuka, E., Bednara, J., & Gorecki, R. (2005). Anatomical features and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats. Annals of Botany, 96(6), 1109–1119. https://doi.org/10.1093/aob/mci262

Gunning, B. E. S., & Steer, M. W. (1996). Plant cell biology: Structure and function. Jones and Bartlett.

Hanczaruk, R., & Kompała-Bąba, A. (2019). Changes in the vascular flora of a postflotation zinc-lead ore spoil heap of the “Orzeł Biały” mining and smelting works in Bytom (Silesian Upland) after 15 years. Acta Agrobotanica, 72(1), Article 1762. https://doi.org/10.5586/aa.1762

Kalashnyk, H., Nuzhyna, N., & Gaidarzhy, M. (2016). Anatomical and morphological features of seedlings of some Cactoideae Eaton (Cactaceae Juss.) species. Acta Agrobotanica, 69(4), Article 1697. https://doi.org/10.5586/aa.1697

Korner, C. H., & Larcher, W. (1988). Plant life in cold climates. Symposia of the Society for Experimental Biology, 42, 25–57.

Кунах [Kunakh], В. А. [V. A.]. (2010). Додаткові або В-хромосоми рослин. Походження і біологічне значення [Supernumerary or B-chromosomes in plants. Origin and biological implication]. Вісник українського товариства селекціонерів та генетиків [Bulletin of the Ukrainian Society of Breeders and Geneticists], 8(1), 99–139.

Larcher, W. (1995). Physiological plant ecology (3rd ed.). Springer.

Lobo, G. M., de Souza, T. V., Voltolini, C. H., Reis, A., & Santos, M. (2013). Leaf epidermis of the rheophyte Dyckia brevifolia Baker (Bromeliaceae). The Scientific World Journal, 2013, Article 307593. https://doi.org/10.1155/2013/307593

Malvicini, M., Gutierrez-Moraga, A., Rodriguez, M. M., Gomez-Bustillo, S., Salazar, L., Sunkel, C., Nozal, L., Salgado, A., Hidalgo, M., Lopez-Casas, P., & Mazzolini, G. (2018). A tricin derivative from Deschampsia antarctica Desv. inhibits colorectal carcinoma growth and liver metastasis through the induction of a specific immune response. Molecular Cancer Therapeutics, 17(5), 966–976. https://doi.org/10.1158/1535-7163.MCT-17-0193

Metcalfe, C. R. (1960). Anatomy of monocotyledons (Vol. 1). Claredon Press.

Navrotska, D. O., Andreev, I. O., Betekhtin, A. A., Rojek, M., Parnikoza, I. Y., Myryuta, G. Y., Poronnik, O. O., Miryuta, N. Y., Szymanowska-Pułka, J., Grakhov, V. V., Ivannikov, R., Hasterok, R., & Kunakh, V. A. (2018). Assessment of the molecular cytogenetic, morphometric and biochemical parameters of Deschampsia antarctica from its southern range limit in maritime Antarctic. Polish Polar Research, 39(4), 525–548. https://doi.org/10.24425/118759

Navrotska, D. O., Andreev, I. O., Parnikoza, I. Y., Spiridonova, K. V., Poronnik, O. O., Miryuta, N. Y., Myryuta, G. Y., Zahrychuk, O. M., Drobyk, N. M., & Kunakh, V. A. (2017). Comprehensive characterization of cultivated in vitro Deschampsia antarctica Desv. plants with different chromosome numbers. Cytology and Genetics, 51(6), 12–21. https://doi.org/10.3103/S009545271706010X

Nuzhyna, N., Parnikoza, I., Poronnik, O., Kozeretska, I., & Kunakh, V. (2019). Anatomical variations of Deschampsia antarctica É. Desv. plants from distant Antarctic regions, in vitro culture, and in relations to Deschampsia caespitosa (L.) P. Beauv. Polish Polar Research, 40(4), 359–381. https://doi.org/10.24425/ppr.2019.130903

Nuzhyna, N. V., Gaidarzhy, M. M., & Holubenko, A. V. (2020). Crassula genus plants response to temperature stress depends on anatomical structure and antioxidant system. The Ukrainian Biochemical Journal, 92(4), 111–122. https://doi.org/10.15407/ubj92.04.111

Nuzhyna, N. V., & Tkachuk, O. O. (2019). Various antioxidant responses to hyperthermia in anatomically different species of the genus Rosa. Biosystems Diversity, 27(3), 193–199. https://doi.org/10.15421/011926

Ozheredova, I. P., Parnikoza, I. Y., Poronnik, O. O., Kozeretska, I. A., Demidov, S. V., & Kunakh, V. A. (2015). Mechanisms of Antarctic vascular plant adaptation to abiotic environmental factors. Cytology and Genetics, 49(2), 139–145. https://doi.org/10.3103/S0095452715020085

Парнікоза [Parnikoza], І. Ю. [I. Iu.], Мірюта [Miriuta], Н. Ю. [N. Iu.], Іванець [Ivanets′], В. Ю. [V. Iu.], & Дикий [Dykyĭ], Є. О. [Ie. O.]. (2018). Визначення зведеного латентного показника пристосовуваності (ЗЛПП) із врахуванням внеску деяких показників довкілля для популяцій Deschampsia antarctica острова Галіндез (Морська Антарктика) в сезон 2017/2018 [Determination of the united quality latent index of adaptability (UQLIA) and contribution of some environmental parameters to it for Deschampsia antarctica populations, Galindez Island (maritime Antarctic) season 2017/2018]. Вісник Українського товариства генетиків і селекціонерів [The Bulletin of Ukrainian Society of Geneticists and Breeders], 16(2), 190–202. https://doi.org/10.7124/visnyk.utgis.16.2.1057

Parnikoza, I., Miryuta, N., Ozheredova, I., Kozeretska, I., Smykla, J., Kunakh, V., & Convey, P. (2015). Comparative analysis of Deschampsia antarctica Desv. population adaptability in the natural environment of the Admiralty Bay region (King George Island, maritime Antarctic). Polar Biology, 38(9), 1401–1411. https://doi.org/10.1007/s00300-015-1704-1

Pyykko, M. (1966). The leaf anatomy of East Patagonian xeromorphic plants. Annales Botanici Fennici, 3, 453–622.

Romeis, B. (1948). Mikroskopische Technik [Microscopic technique]. Oldenbourg Wissenschaftsverlag. https://doi.org/10.1515/9783486777031

Romero, M., Casanova, A., Iturra, G., Reyes, A., Montenegr, G. A., & Alberdi, M. (1999). Leaf anatomy of Deschampsia antarctica (Poaceae) from the maritime Antarctic and its plastic response to changes in the growth conditions. Revista Chilena de Historia Natural, 72, 411–425.

Schreiber, L., Elshatshat, S., Koch, K., Lin, J., & Santrucek, J. (2006). AgCl precipitates in isolated cuticular membranes reduce rates of cuticular transpiration. Planta, 223, 283–290. https://doi.org/10.1007/s00425-005-0084-0

Silva, L. J., Crevelin, E. J., Souza, D. T., Lacerda-Júnior, G. V., de Oliveira, V. M., TascaGois Ruiz, A. L., Rosa, L. H., Beraldo Moraes, L. A., & Melo, I. S. (2020). Actinobacteria from Antarctica as a source for anticancer discovery. Scientific Reports, 10, Article 13870. https://doi.org/10.1038/s41598-020-69786-2

Спірідонова [Spiridonova], К. В. [K. V.], Андрєєв [Andrieiev], І. О. [I. O.], Загричук [Zagrichuk], О. М. [O. M.], Навроцька [Navrots′ka], Д. О. [D. O.], Твардовська [Tvardovs′ka], М. О. [M. O.], Дробик [Drobyk], Н. М. [N. M.], & Кунах [Kunakh], В. А. [V. A.]. (2016). Генетична стабільність отриманих мікроклональним розмноженням рослин Deschampsia antarctica Desv. за тривалого культивування in vitro [Genetic stability of micropropagated plants of Deschampsia antarctica Desv. during long-term in vitro culture]. Физиология растений и генетика [Plant Physiology and Genetics], 48(6), 498–507. https://doi.org/10.15407/frg2016.06.498




DOI: https://doi.org/10.5586/aa.7416

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society