Responses of Tillering Stipa breviflora Traits to a Long-Term Grazing Gradient

Jiangwen Li, Guodong Han, Saruul Kang, Xiaoxi Zhang, Cai Li

Abstract


The Stipa breviflora desert steppe is an important component of the Eurasian steppe, and its ecosystem functions are directly affected by changes in the individual functional traits of S. breviflora. Based on 14 years of data from the grazing experiment in S. breviflora desert steppe, we investigated changes in the individual tillering traits of S. breviflora in response to four levels (none, light, moderate, heavy) of long-term grazing. The results showed that: (i) long-term grazing resulted in a greater decrease in species richness and increased biomass contribution of S. breviflora in the communities; (ii) long-term grazing resulted in significant differences in aboveground/belowground plant tillering functional traits and their relationships under different grazing intensities; (iii) the leaf biomass of S. breviflora tillering individuals was strongly dependent on leaf number, while the change in root biomass was strongly dependent on the total root length, specific root length, root furcation number, and root crossing number. The response of S. breviflora biomass to grazing intensity and its relation to tillering individual traits revealed that long-term grazing leads to vast tillering in S. breviflora tussock and significant changes in S. breviflora tillering traits, which will have a profound influence on the function of the desert grassland ecosystem.

Keywords


stocking rate; sheep grazing; Stipa breviflora; tillering traits

Full Text:

PDF XML (JATS)

References


Archer, S., & Tieszen, L. L. (1983). Effects of simulated grazing on foliage and root production and biomass allocation in an arctic tundra sedge (Eriophorum vaginatum). Oecologia, 58(1), 92–102. https://doi.org/10.1007/BF00384547

Chen, Y., Pilzae, L., Gilzae, L., Shigeru, M., & Takehisa, O. (2006). Simulating root responses to grazing of a Mongolian grassland ecosystem. Plant Ecology, 183(2), 265–275. https://doi.org/10.1007/s11258-005-9038-7

Coupland, R. T. (Ed.). (1993). Natural grasslands. Eastern Hemisphere and résumé. Elsevier.

Daorina, Song, Y. T., Wu, Y., Huo, G. W., Wang, X. M., & Xu, Z. C. (2016). Response of plant leaf traits to grazing intensity in Stipa krylovii steppe. Chinese Journal of Applied Ecology, 27(7), 2231–2238. https://doi.org/10.13287/j.1001-9332.201607.034

Díaz, S., Lavorel, S., Mcintyre, S., Falczuk, V., Casanoves, F., Milchunas, D. G., Skarpe, C., Rusch, G., Sternberg, M., & Noy-Meir, I. (2007). Plant trait responses to grazing – A global synthesis. Global Change Biology, 13(2), 313–341. https://doi.org/10.1111/j.1365-2486.2006.01288.x

Doescher, P. S., Svejcar, T. J., & Jaindl, R. G. (1997). Gas exchange of Idaho fescue in response to defoliation and grazing history. Journal of Range Management, 50(3), 285–289. https://doi.org/10.2307/4003731

Evju, M., Austrheim, G., Halvorsen, R., & Mysterud, A. (2009). Grazing responses in herbs in relation to herbivore selectivity and plant traits in an alpine ecosystem. Oecologia, 161(1), 77–85. https://doi.org/10.1007/s00442-009-1358-1

Fensham, R. J., Silcock, J. L., & Firn, J. (2014). Managed livestock grazing is compatible with the maintenance of plant diversity in semidesert grasslands. Ecological Applications, 24(3), 503–517. https://doi.org/10.1890/13-0492.1

Gao, Y. Z., Giese, M., Lin, S., Sattelmacher, B., Zhao, Y., & Brueck, H. (2008). Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant and Soil, 307(1–2), 41–50. https://doi.org/10.1007/s11104-008-9579-3

Herrera, M., Ruízjarabo, I., Hachero, I., Vargaschacoff, L., Amo, A., & Mancera, J. M. (2012). Stocking density affects growth and metabolic parameters in the brill (Scophthalmus rhombus). Aquaculture International, 20(6), 1041–1052. https://doi.org/10.1007/s10499-012-9513-9

Jatimliansky, J. R., Gimenez, D. O., & Bujan, A. (1997). Herbage yield, tiller number and root system activity after defoliation of prairie grass (Bromus catharticus Vahl). Grass & Forage Science, 52(1), 52–62. https://doi.org/10.1046/j.1365-2494.1997.00053.x

Kimuyu, D. M., Sensenig, R. L., Riginos, C., Veblen, K. E., & Young, T. P. (2014). Native and domestic browsers and grazers reduce fuels, fire temperatures, and acacia ant mortality in an African savanna. Ecological Society of America, 24(4), 741–749. https://doi.org/10.1890/13-1135.1

Lefcheck, J. S., Byrnes, J. E. K., Isbell, F., Gamfeldt, L., Griffin, J. N., Eisenhauer, N., Hensel, M. J. S., Hector, A., Cardinale, B. J., & Duffy, J. E. (2015). Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications, 6, Article 6936. https://doi.org/10.1038/ncomms7936

Lemaire, G., Hodgson, J., de Moraes, A., Carvalho, P. C. de F., & Nabinger, C. (Eds.). (2000). Grassland ecophysiology and grazing ecology. CABI Publishing. https://doi.org/10.1079/9780851994529.0000

Li, J., Wang, Z., Ren, H., Jin, Y., Han, M., Wang, S., & Han, G. (2017). Plastic response of individual functional traits in Stipa breviflora to long-term grazing in a desert steppe. Acta Botanica Boreali – Occidentalia Sinica, 37(9), 1854–1863. https://doi.org/10.7606/j.issn.1000-4025.2017.09.1854

Li, R., Shi, F., & Fukuda, K. (2010). Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Environmental & Experimental Botany, 68(1), 66–74. https://doi.org/10.1016/j.envexpbot.2009.10.004

Li, X.-L., Hou, X.-Y., Wu, X.-H., Sarula, Lei, J.-L., Chen, H.-J., Liu, Z.-Y., & Ding, Y. (2014). Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe. Chinese Journal of Plant Ecology, 38(5), 440–451. https://doi.org/10.3724/SP.J.1258.2014.00040

Louault, F., Pillar, V. D., Aufrère, J., Garnier, E., & Soussana, J. F. (2005). Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. Journal of Vegetation Science, 16(2), 151–160. https://doi.org/10.1111/j.1654-1103.2005.tb02350.x

Lü, X.-T., Freschet, G. T., Kazakou, E., Wang, Z.-W., Zhou, L.-S., & Han, X.-G. (2015). Contrasting responses in leaf nutrient-use strategies of two dominant grass species along a 30-yr temperate steppe grazing exclusion chronosequence. Plant and Soil, 387(1), 69–79. https://doi.org/10.1007/s11104-014-2282-7

Lunt, I. D., Eldridge, D. J., Morgan, J. W., & Witt, G. B. (2007). A framework to predict the effects of livestock grazing and grazing exclusion on conservation values in natural ecosystems in Australia. Australian Journal of Botany, 55(4), 401–415. https://doi.org/10.1071/BT06178

Mooney, K. A., Halitschke, R., Kessler, A., & Agrawal, A. A. (2010). Evolutionary trade-offs in plants mediate the strength of trophic cascades. Science, 327(5973), 1642–1644. https://doi.org/10.1126/science.1184814

Nicotra, A. B., Leigh, A., Boyce, C. K., Jones, C. S., Niklas, K. J., Royer, D. L., & Tsukaya, H. (2011). The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology, 38(7), 535–552. https://doi.org/10.1071/FP11057

Pierre, K. J. L., Blumenthal, D. M., Brown, C. S., Klein, J. A., & Smith, M. D. (2016). Drivers of variation in aboveground net primary productivity and plant community composition differ across a broad precipitation gradient. Ecosystems, 19(3), 521–533. https://doi.org/10.1007/s10021-015-9949-7

Ren, T., Wang, H., Yuan, Y., Feng, H., Wang, B., Kuang, G., Wei, Y., Gao, W., Shi, H., & Liu, G. (2021). Biochar increases tobacco yield by promoting root growth based on a three-year field application. Scientific Reports, 11, Article 21991. https://doi.org/10.1038/s41598-021-01426-9

Rotundo, J. L., & Aguiar, M. R. (2008). Herbivory resistance traits in populations of Poa ligularis subjected to historically different sheep grazing pressure in Patagonia. Plant Ecology, 194(1), 121–133. https://doi.org/10.1007/s11258-007-9279-8

Schönbach, P., Wan, H., Gierus, M., Bai, Y., Müller, K., Lin, L., Susenbeth, A., & Taube, F. (2011). Grassland responses to grazing: Effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant and Soil, 340(1–2), 103–115. https://doi.org/10.1007/s11104-010-0366-6

Shi, K., Hu, W. H., Dong, D. K., Zhou, Y. H., & Yu, J. Q. (2007). Low O2 supply is involved in the poor growth in root-restricted plants of tomato (Lycopersicon esculentum Mill.). Environmental & Experimental Botany, 61(2), 181–189. https://doi.org/10.1016/j.envexpbot.2007.05.010

Socher, S. A., Prati, D., Boch, S., Müller, J., Baumbach, H., Gockel, S., Hemp, A., Schöning, I., Wells, K., & Buscot, F. (2013). Interacting effects of fertilization, mowing and grazing on plant species diversity of 1,500 grasslands in Germany differ between regions. Basic & Applied Ecology, 14(2), 126–136. https://doi.org/10.1016/j.baae.2012.12.003

Veselova, S. V., Farhutdinov, R. G., Veselov, S. Y., Kudoyarova, G. R., Veselov, D. S., & Hartung, W. (2005). The effect of root cooling on hormone content, leaf conductance and root hydraulic conductivity of durum wheat seedlings (Triticum durum L.). Journal of Plant Physiology, 162(1), 21–26. https://doi.org/10.1016/j.jplph.2004.06.001

Wan, H., Bai, Y., Schönbach, P., Gierus, M., & Taube, F. (2011). Effects of grazing management system on plant community structure and functioning in a semiarid steppe: Scaling from species to community. Plant and Soil, 340(1–2), 215–226. https://doi.org/10.1007/s11104-010-0661-2

Wang, J., Zhong, M., Wu, R., Dong, Q. M., Wang, K., & Shao, X. (2016). Response of plant functional traits to grazing for three dominant species in alpine steppe habitat of the Qinghai-Tibet Plateau, China. Ecological Research, 31(4), 515–524. https://doi.org/10.1007/s11284-016-1360-0

Wang, M., & Ma, C. (1994). A study on methods of estimating the carrying capacity of grassland. Grassland of China, 1994(5), 19–22.

Wang, X., Yang, X., Wang, L., Chen, L., Song, N., Gu, J., & Xue, Y. (2018). A six-year grazing exclusion changed plant species diversity of a Stipa breviflora desert steppe community, northern China. PeerJ, 6, Article e4359. https://doi.org/10.7717/peerj.4359

Wei, X. T., Zhong, M. Y., Liu, Y. H., Wu, R. X., & Shao, X. Q. (2019). Covariation in root traits of Leymus chinensis in response to grazing in steppe rangeland. The Rangeland Journal, 41(4), 313–322. https://doi.org/10.1071/RJ18099

Wei, Z. (2000). The response of Stipa breviflora community to stocking rate. Grassland of China, 6, 2–6.

White, R. P., Murray, S., & Rohweder, M. (2000). Pilot analysis of global ecosystems: Grassland ecosystems. World Resources Institute.

Williams, R. J., Bradstock, R. A., & Müller, W. J. (2006). Does alpine grazing reduce blazing? A landscape test of a widely-held hypothesis. Austral Ecology, 31(8), 925–936. https://doi.org/10.1111/j.1442-9993.2006.01655.x

Williamson, G. J., Murphy, B. P., & Bowman, D. M. J. S. (2014). Cattle grazing does not reduce fire severity in eucalypt forests and woodlands of the Australian Alps. Austral Ecology, 39(4), 462–468. https://doi.org/10.1111/aec.12104

Wu, G. L., Du, G. Z., Liu, Z. H., & Thirgood, S. (2009). Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil, 319(1–2), 115–126. https://doi.org/10.1007/s11104-008-9854-3

Wu, J. (2013). Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landscape Ecology, 28(6), 999–1023. https://doi.org/10.1007/s10980-013-9894-9

Wu, Z. (2010). Flora of China. Science Press.

Zhao, W., Chen, S.-P., Han, X.-G., & Lin, G.-H. (2009). Effects of long-term grazing on the morphological and functional traits of Leymus chinensis in the semiarid grassland of Inner Mongolia, China. Ecological Research, 24(1), 99–108. https://doi.org/10.1007/s11284-008-0486-0

Zheng, S., Lan, Z., Li, W., Shao, R., Shan, Y., Wan, H., Taube, F., & Bai, Y. (2011). Differential responses of plant functional trait to grazing between two contrasting dominant C3 and C4 species in a typical steppe of Inner Mongolia, China. Plant and Soil, 340(1–2), 141–155. https://doi.org/10.1007/s11104-010-0369-3

Zheng, S., Li, W., Lan, Z., Ren, H., & Wang, K. (2015). Functional trait responses to grazing are mediated by soil moisture and plant functional group identity. Scientific Reports, 5, Article 18163. https://doi.org/10.1038/srep18163




DOI: https://doi.org/10.5586/asbp.913

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society