Differences in Potamogeton praelongus Morphology and Habitats in Europe

Zuzana Kozelková, Romana Prausová, Zina Tomášová, Lenka Šafářová

Abstract


One of the most southern European occurrences of Potamogeton praelongus is in the Czech Republic (CR), with only one native population in the Orlice River floodplain in Eastern Bohemia, the only surviving site from 10 Czech localities known 45 years ago. This species is critically endangered in the CR and needs to be actively protected with a rescue program. The number of P. praelongus sites increases along a latitudinal gradient, from Central to North Europe (CR, Poland, Sweden, and Norway), and correlates with improving conditions (water transparency and nutrient content in water) for this species along this gradient. Although differences in site conditions between Central and North Europe were caused by changes in landscape geomorphology and vegetation during the glacial and postglacial eras, presently, anthropogenic impact is primarily observed.

The Czech sites for P. praelongus have distinctly lower water depth and transparency, and conversely, higher conductivity, temperature, and shade levels than the Nordic ones. These extreme conditions in most biotopes of this light-demanding and mesotrophic species in the CR result in lower fitness and different morphological parameters in the Czech populations. These changes lead to decreased competitive ability against filamentous algae and more competitive aquatic plant species and increase the impact of animals.

The Nordic nonintensively managed landscape provides numerous large, deep lakes, which are optimal for this aquatic species. In the CR, P. praelongus can currently only survive in rivers and their oxbows, but these are heavily influenced by intensive landscape management and fishing. Comparison of the populations and their site conditions in the CR and other European countries showed that all Czech native and artificially established sites are exposed to eutrophication and its consequences, which are the most important factors affecting the survival of P. praelongus.


Keywords


long-stalked pondweed; submerged macrophytes; water conditions; species composition

Full Text:

PDF XML (JATS)

References


Akasaka, M., & Takamura, N. (2011). The relative importance of dispersal and the local environment for species richness in two aquatic plant growth forms. Oikos, 120(1), 38–46. https://doi.org/10.1111/j.1600-0706.2010.18497.x

Alahuhta, J., & Heino, J. (2013). Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. Journal of Biogeography, 40(8), 1572–1582. https://doi.org/10.1111/jbi.12089

Balevičienė, J., & Balevičius, A. (2006). Qualitative and quantitative parameters of phytocenoses in Lithuanian lakes of different trophic state. Ekologija, 2006(2), 34–43.

Barko, J. W., Adams, M. S., & Clesceri, N. L. (1986). Environmental factors and their consideration in the management of submersed aquatic vegetation: A review. Journal of Aquatic Plant Management, 24, 1–10.

Bennike, O., & Anderson, J. N. (1998). Potamogeton praelongus in West Greenland. Nordic Journal of Botany, 18(4), 499–501. https://doi.org/cq6hk5

Bilz, M., Kell, S. P., Maxted, N., & Lansdown, R. V. (2011). European red list of vascular plants. Publications Office of the European Union. https://doi.org/10.2779/8515

Bornette, G., & Puijalon, S. (2011). Response of aquatic plants to abiotic factors: A review. Aquatic Sciences, 73(1), 1–14. https://doi.org/10.1007/S00027-010-0162-7

Burks, R. L., Lodge, D. M., Jeppesen, E., & Lauridsen, T. L. (2002). Diel horizontal migration of zooplankton: Costs and benefits of inhabiting littoral zones. Freshwater Biology, 47(3), 343–365. https://doi.org/10.1046/j.1365-2427.2002.00824.x

Casper, S. J., & Krausch, H. D. (1981). Süßwasserflora von Mitteeuropa [Freshwater flora of Central Europe] (Vol. 24). VEB Gustav Fischer Verlag.

Chen, J., Cao, T., Zhang, X., Xi, Y., Ni, L., & Jeppesen, E. (2016). Differential photosynthetic and morphological adaptations to low light affect depth distribution of two submersed macrophytes in lakes. Scientific Reports, 6, Article 34028. https://doi.org/10.1038/srep34028

Čeřovský, J., Feráková, V., Holub, J., Maglocký, Š., & Procházka, F. (Eds.). (2001). Červená kniha ohrozených a vzácnych druhov rastlín a živočíchov ČR a SR. Vol. 5. Vyššie rastliny [Red book of threatened and rare species of plants and animals in the CR and SR. Vol. 5. Vascular plants]. Príroda.

Danihelka, J., Chrtek, J., Jr., & Kaplan, Z. (2012). Checklist of vascular plants of the Czech Republic. Preslia, 84(1), 647–811.

Declerck, S., Vandekerkhove, J., Johansson, L., Muylaert, K., Conde-Porcuna, J. M., Van der Gucht, K., Pérez-Martínez, C., Lauridsen, T., Schwenk, K., Zwart, G., Rommens, W., López-Ramos, J., Jeppesen, E., Vyverman, W., Brendonck, L., & De Meester, L. (2005). Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology, 86(7), 1905–1915. https://doi.org/10.1890/04-0373

Doyle, R. D. (2001). Effects of waves on the early growth of Vallisneria americana. Freshwater Biology, 46(3), 389–397. https://doi.org/10.1046/j.1365-2427.2001.00668.x

Egertson, C. J., Kopaska, J. A., & Downing, J. A. (2004). A century of change in macrophyte abundance and composition in response to agricultural eutrophication. Hydrobiologia, 524, 145–156. https://doi.org/10.1023/B:HYDR.0000036129.40386.ce

Eisner, W. R., Törnqvist, T. E., Koster, E. A., Bennike, O., & van Leeuwen, J. F. N. (1995). Paleoecological studies of a Holocene lacustrine record from the Kangerlussuaq (Søndre Strømfjord) region of West Greenland. Quaternary Research, 43(1), 55–66. https://doi.org/10.1006/qres.1995.1006

Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., Werner, W., & Paulißen, D. (1992). Zeigerwerte von Pflanzen in Mitteleuropa [Pointer values of plants in Central Europe]. Scripta Geobotanica, 18(1), 3–258.

Fajer, M., Waga, J. M., Rzetala, M., Szymczyk, A., Nita, M., Machowski, R., Rzetala, M. A., & Ruman, M. (2012). The Late Vistulian and Holocene evolution of Jezioro Lake: A record of environmental change in southern Poland found in deposits and landforms. Journal of Paleolimnology, 48(1), 651–667. https://doi.org/10.1007/s10933-012-9634-1

Fick, S. E., & Hijmans, R. J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Fu, H., Yuan, G., Cao, T., Ni, L., Zhang, M., & Wang, S. (2012). An alternative mechanism for shade adaptation: Implication of allometric responses of three submersed macrophytes to water depth. Ecological Research, 27(6), 1087–1094. https://doi.org/10.1007/s11284-012-0991-z

Fu, H., Zhong, J., Yuan, G., Ni, L., Xie, P., & Cao, T. (2014). Functional traits composition predict macrophytes community productivity along a water depth gradient in a freshwater lake. Ecology and Evolution, 4(9), 1516–1523. https://doi.org/10.1002/ece3.1022

Gaberščik, A., Germ, M., Kržič, N., & Urbanc-Berčič, O. (2005). The “Multifunctional Integrated Study Danube, Corridor and Catchment” (MIDCC): year report – Macrophytes of the rivers Stržen, Obrh, Rak and Ljubljanica. National Institute of Biology and Department of Biology, Biotechnical Faculty, University of Ljubljana.

Gąsiorowski, M., & Kupryjanowicz, M. (2009). Lake–peat bog transformation recorded in the sediments of the Stare Biele mire (northeastern Poland). Hydrobiologia, 631(1), 143–154. https://doi.org/10.1007/s10750-009-9807-8

Grinberga, L. (2010). Environmental factors influencing the species diversity of macrophytes in middle-sized stress in Latvia. Hydrobiologia, 656(1), 233–241. https://doi.org/10.1007/s10750-010-0432-3

Gross, E. M. (2003). Allelopathy of aquatic autotrophs. Critical Reviews in Plant Sciences, 22(3–4), 313–339. https://doi.org/10.1080/713610859

Grulich, V. (2012). Red list of vascular plants of the Czech Republic: 3rd edition. Preslia, 84(3), 631–645.

Hintze, J. (2001). Number Cruncher Statistical System (NCSS) [Computer software]. https://www.ncss.com/

Hough, R. A., & Wetzel, R. G. (1977). Photosynthetic pathways of some aquatic plants. Aquatic Botany, 3(1), 297–313. https://doi.org/10.1016/0304-3770(77)90035-3

Hultén, E. (1964). The circumpolar plants. Vol. 1. Vascular cryptogams, conifers, monocotyledons. Almqvist & Wiksell.

Husák, Š., & Adamec, L. (1998). Záchranné kultivace ohrožených druhů vodních a mokřadních rostlin v Botanickém ústavu AV ČR v Třeboni [Conservation cultivations of endangered aquatic and wetland plant species of species in the Institute of Botany in Třeboň]. Příroda, Praha, 12, 7–26.

Husák, Š., & Kaplan, Z. (1997). Studium a záchrana vybraných ohrožených druhů rodu Potamogeton. I. Potamogeton praelongus (Rameno u Stříbrného rybníka) [Study and protection of several threatened species of Potamogeton genus. I. Potamogeton praelongus (Rameno u Stříbrného rybníka)]. Botanický ústav AV ČR.

Jankovská, V. (1980). Paläeobotanische Rekonstruction der Vegetationsentwicklung im Becken Třeboňská pánev während des Spätglazials und Holozäns [Palaeobotanical reconstruction of vegetation development in Třeboňská pánev basin during the Late Glacial and Holocene periods]. Academia.

Kaplan, Z. (2010). Potamogeton L. – rdest [Long-stem pondweed]. In J. Chrtek Jr., Z. Kaplan, & J. Štěpánková (Eds.), Květena České republiky [Flora of the Czech Republic] (Vol. 8, pp. 330–378). Academia.

Kitner, M., Prausová, R., & Adamec, L. (2013). Present status of genetic diversity of Potamogeton praelongus populations in the Czech Republic. Phyton, 53(1), 73–86.

Lacoul, P., & Freedman, B. (2006). Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews, 14(2), 89–136. https://doi.org/10.1139/a06-001

Lansdown, R. V. (2014). Potamogeton praelongus. The IUCN Red List of Threatened Species. Retrieved April 1, 2020, from https://doi.org/f84v

Lauridsen, T. L., Jeppesen, E., Declerck, S. A. J., de Meester, L., Conde-Porcuna, J. M., Rommens, W., & Brucet, S. (2015). The importance of environmental variables for submerged macrophyte community assemblage and coverage in shallow lakes: Differences between northern and southern Europe. Hydrobiologia, 744(1), 49–61. https://doi.org/10.1007/s10750-014-2055-6

Maberly, S. C. (1993). Morphological and photosynthetic characteristics of Potamogeton obtusifolius from different depths. Journal of Aquatic Plant Management, 31(1), 34–39.

Mäemets, H., Palmik, K., Haldna, M., Sudnitsyna, D., & Melnik, M. (2010). Eutrophication and macrophyte species richness in the large shallow North-European Lake Peipsi. Aquatic Botany, 92(4), 273–280. https://doi.org/10.1016/j.aquabot.2010.01.008

Middelboe, A. L., & Markager, S. (1997). Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology, 37(3), 553–568. https://doi.org/10.1046/j.1365-2427.1997.00183.x

Mulholland, P. J., Best, G. R., Coutant, C. C., Hornberger, G. M., Meyer, J. L., Robinson, P. J., Turner, R. E., Vera-Herrera, F., & Wetzel, R. G. (1997). Effects of climate change on freshwater ecosystems of the South-Eastern United States and the Gulf Coast of Mexico. Hydrological Processes, 11(8), 949–970. https://doi.org/d9wn7t

Muylaert, K., Pérez-Martínez, C., Sánches-Castillo, P., Lauridsen, T. L., Vanderstukken, M., Declerck, S. A. J., Van der Gucht, K., Conde-Porcuna, J.-M., Jeppesen, E., De Meester, L., & Vyverman, W. (2010). Influence of nutrients, submerged macrophytes and zooplankton grazing on phytoplankton biomass and diversity along a latitudinal gradient in Europe. Hydrobiologia, 653(1), 79–90. https://doi.org/10.1007/s10750-010-0345-1

Netten, J. J. C., Van Zuidam, J., Kosten, S., & Peeters, E. T. H. M. (2011). Differential response to climatic variation of free-floating and submerged macrophytes in ditches. Freshwater Biology, 56(9), 1761–1768. https://doi.org/10.1111/j.1365-2427.2011.02611.x

Nowak, A., & Nowak, S. (2004). Potamogeton praelongus Wulfen a jeho výskyt v Opolském Slezsku (JZ Polsko) [Potamogeton praelongus Wulfen and its occurrence in the Opole Silesia (SW Poland)]. Časopis Slezského zemského muzea, Série A: Vědy přírodní, 53, 279–282.

Pant, H. K. (2007). Nonlinear effects of climate change on phosphorus stability in wetlands: Concept and estimation. Journal of Food, Agriculture and Environment, 5(1), 295–301. https://doi.org/10.1234/4.2007.777

Petr, L., Žáčková, P., Grygar, T. M., Píšková, A., Křížek, M., & Treml, V. (2013). Šúr, a former late-glacial and Holocene lake at the westernmost margin of the Carpathians. Preslia, 85(1), 239–263.

Portnoy, J. W. (1991). Summer oxygen depletion in a diked New England estuary. Estuaries, 14(1), 122–129. https://doi.org/10.2307/1351685

Pott, R. (1995). The plant communities of Germany. E. Ulmer.

Potůčková, A. (2015). Historie vegetace zaniklého jezera Šúr od pozdní doby ledové po dnešek [Vegetation history of the former Šúr Lake from the late ice age to the present]. Živa, 2(1), 66–68.

Prausová, R. (2016). Sukcesní změny na lokalitě Rameno Orlice u Stříbrného rybníka v Malšově Lhotě u Hradce Králové a jejich vliv na rdest dlouholistý a současnou druhovou diverzitu v této lokalitě [Successional changes in the locality of Oxbow Lake of the Orlice River near the Stříbrný pond in Malšova Lhota at Hradec Králové and their impact on Potamogeton praelongus and the current species diversity in this locality]. Východočeský sborník přírodovědný – Práce a studie, 23, 57–85.

Prausová, R., Janová, J., & Adamec, L. (2011). Rescue of the critically endangered long-stalked pondweed (Potamogeton praelongus) in the Czech Republic. Acta Biologica Slovenica, 54(1), 43–54.

Prausová, R., Janová, J., & Šafářová, L. (2013). Testing achene germination of Potamogeton praelongus Wulfen. Central European Journal of Biology, 8(1), 78–86. https://doi.org/10.2478/s11535-012-0114-4

Prausová, R., Kozelková, Z., Tomášová, Z., & Brodský, M. (2017). Aquatic plant long-stalked pondweed (Potamogeton praelongus Wulfen). In R. Prausová (Ed.), Potamogeton praelongus Wulfen (pp. 11–47). Gaudeamus.

Prausová, R., Kozelková, Z., Tomášová, Z., Brodský, M., Havelka, R., Dvořák, V., Adamec, L., Kučerová, A., Pásek, K., & Pitelková, P. (2017). Rescue programme for long-stalked pondweed (Potamogeton praelongus Wulfen). In R. Prausová (Ed.), Potamogeton praelongus Wulfen (pp. 49–133). Gaudeamus.

Prausová, R., Kozelková, Z., Tomášová, Z., Brodský, M., Havelka, R., Pitelková, P., & Hašler, P. (2017). Research of long-stalked pondweed (Potamogeton praelongus Wulfen) localities in the Northern Europe. In R. Prausová (Ed.), Potamogeton praelongus Wulfen (pp. 135–187). Gaudeamus.

Prausová, R., Kozelková, Z., Tomášová, Z., Havelka, R., Brodský, M., Dvořák, V., Kučerová, A., Adamec, L., & Pásek, K. (2015). Realizace záchranného programu pro rdest dlouholistý (Potamogeton praelongus Wulfen). Průběžná zpráva z projektu EHP (MGS II-15) za rok 2015 [Realization of the rescue program for long-stalked pondweed (Potamogeton praelongus Wulfen). Report – project EEA (SGS II-15) 2015]. Univerzita Hradec Králové.

Prausová, R., Sikorová, P., & Šafářová, L. (2015). Generative reproduction of long stalked pondweed (Potamogeton praelongus Wulfen) in the laboratory. Aquatic Botany, 120(B), 268–274. https://doi.org/10.1016/j.aquabot.2014.09.005

Rintanen, T. (1996). Changes in the flora and vegetation of 113 Finnish lakes during 40 years. Annales Botanici Fennici, 33(1), 101–122.

Roleček, J., Tichý, L., Zelený, D., & Chytrý, M. (2009). Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. Journal of Vegetation Science, 20(4), 596–602. https://doi.org/10.1111/j.1654-1103.2009.01062.x

Sakura, Y. (1993). Groundwater flow estimated from temperatures in the Yonezawa basin, northeast Japan. In N. E. Peters, E. Hoehn, C. Leibundgut, N. Tase, & D. E. Walling (Eds.), Tracers in hydrology: Proceedings of an international symposium held at Yokohama, Japan, 21–23 July 1993 (pp. 161–170). International Association of Hydrological Sciences.

Sand-Jensen, K., Riis, T., Vestergaard, O., & Larsen, S. E. (2000). Macrophyte decline in Danish lakes and streams over the past 100 years. Journal of Ecology, 88(6), 1030–1040. https://doi.org/10.1046/j.1365-2745.2000.00519.x

Scheffer, M., Hosper, S. H., Meijer, M.-L., Moss, B., & Jeppesen, E. (1993). Alternative equilibria in shallow lakes. Trends in Ecology & Evolution, 8(8), 275–279. https://doi.org/10.1016/0169-5347(93)90254-M

Schriver, P., Bogestrand, J., Jeppesen, E., & Sondergaard, M. (1995). Impact of submerged macrophytes on fish–zooplankton–phytoplankton interactions: Large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology, 33(2), 255–270. https://doi.org/10.1111/j.1365-2427.1995.tb01166.x

Schubert, R., Hilbig, W., & Klotz, S. (1995). Bestimmungsbuch der Pflanzengesellschaften Mittel- und Nordostdeutschlands [Identification book of plant communities of central and north-east Germany]. G. Fischer.

Sculthorpe, C. D. (1967). The biology of aquatic vascular plants. Edward Arnold.

Stefanidis, K., & Papastergiadou, E. (2019). Linkages between macrophyte functional traits and water quality: Insights from a study in freshwater lakes of Greece. Water, 11(5), Article 1047. https://doi.org/10.3390/w11051047

Strand, J. A. (2017). Potamogeton praelongus: Transplantation and plant re-establishment in Lake Trummen, Sweden. In R. Prausová (Ed.), Potamogeton praelongus Wulfen (pp. 188–209). Gaudeamus.

Strand, J. A., & Weisner, S. E. B. (2001). Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum). Journal of Ecology, 89(2), 166–175. https://doi.org/10.1046/j.1365-2745.2001.00530.x

Šumberová, K. (2011). Vegetace vodních rostlin zakořeněných ve dně (Potametea) [Vegetation of aquatic plants rooted in the bottom]. In M. Chytrý (Ed.), Vegetace České republiky. 3. Vodní a mokřadní vegetace [Vegetation of the Czech Republic. 3. Aquatic and wetland vegetation] (pp. 101–247). Academia.

Ter Braak, C. J. F., & Šmilauer, P. (2012). CANOCO reference manual and user’s guide: Software for ordination, version 5.0. Microcomputer Power.

The Plant List. (2013). Version 1.1. Retrieved April 1, 2020, from http://www.theplantlist.org/

Tichý, L. (2020). JUICE [Computer software]. Retrieved April 1, 2020, from https://www.sci.muni.cz/botany/juice/

Timms, R. M., & Moss, B. (1984). Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology and Oceanography, 29(3), 472–486. https://doi.org/10.4319/lo.1984.29.3.0472

van Donk, E., Gulati, R. D., Iedema, A., & Meulemans, J. T. (1993). Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia, 251(1), 19–26. https://doi.org/10.1007/BF00007160

Vöge, M. (2002). Ecological studies on water plants of 14 sites around Kangerlussuaq, southern West Greenland, with special regard to Potamogeton. https://scribd.com/document/20317611/Ecological-studies-on-water-plants-of-14sites-around-Kangerlussuaq- southernWest-Greenland-with-special-regard-to-Potamogeton

Weltzin, J. F., Bridgham, S. D., Pastor, J., Chen, J., & Harth, C. (2003). Potential effects of warming and drying on peatland plant community composition. Global Change Biology, 9(2), 141–151. https://doi.org/10.1046/j.1365-2486.2003.00571.x




DOI: https://doi.org/10.5586/asbp.901

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society