Phylogeny of Aconitum Subgenus Aconitum in Europe
Abstract
Phylogenetic relations within Aconitum subgen. Aconitum (Ranunculaceae) in Europe are still unclear. To infer the phylogeny of the nuclear (ITS) region and chloroplast intergenic spacer trnL(UAG)-ndhF of the chloroplast DNA (cpDNA), we analyzed 64 accessions within this taxon, 58 from Europe and six from the Caucasus Mts. Nuclear ITS sequences were identical in 51 European and two Caucasian accessions, whereas the remaining sequences were unique. cpDNA sequences could be categorized into five haplotypes, i.e., A–E, including a European-Caucasian Aconitum haplotype B. Ten cpDNA sequences were unique. A 5-bp indel distinguished the diploids from the tetraploids. None of the extant European diploids were basal to the tetraploid local group. A phylogenetic tree based on combined ITS and cpDNA sequences (bayesian inference, maximum likelihood, minimal parsimony) placed Aconitum burnatii (Maritime Alps, Massif Central) and A. nevadense (Sierra Nevada, Pyrenees) in a sister group to all other European species. A Bayesian relaxed clock model estimated the earliest split of the Caucasian species during the Late Miocene [ca. 7 million years ago (Mya)], and the divergence of A. burnatii and A. nevadense from the European genetic stock during the Miocene/Pliocene (ca. 4.4 Mya). Diploids in Europe are likely to be descendants of the Miocene European-Caucasian flora linked with the ancient Asian (arctiotertiary) genetic stock. The origins of the tetraploids remain unclear, and it is possible that some tetraploids originated from local, now extinct diploids. Both the diploids and tetraploids underwent rapid differentiation in the Late Pliocene – Quaternary period.
Keywords
References
Abbott, R. J. (2008). History, evolution and future of arctic and alpine flora: Overview. Plant Ecology and Diversity, 1, 129–133. https://doi.org/10.1080/17550870802460976
Aeschimann, D., Rasolofo, N., & Theurillat, J. P. (2011). Analyse de la flore des Alpes. 1: historique et biodiversité [Analysis of the flora of the Alps. 1: historical account and biodiversity]. Candollea, 66, 27–55. https://doi.org/10.15553/c2011v661a2
Anderson, C. L., Bremer, K., & Friis, E. M. (2005). Dating phylogenetically basal eudicots using rbcL sequences and multiple fossil reference points. American Journal of Botany, 92, 1737–1748. https://doi.org/10.3732/ajb.92.10.1737
Baduel, P., Bray, S., Vallejo-Marin, M., Kolář, L., & Yant, L. (2018). The “polyploidy hop”: Shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Frontiers in Ecology and Evolution, 6, Article 117. https://doi.org/10.3389/fevo.2018.00117
Baskin, J. M., & Baskin, C. C. (2016). Origins and relationships of the mixed mesophytic forest of Oregon-Idaho, China, and Kentucky: Review and synthesis. Annals of the Missouri Botanical Garden, 101, 525–552. https://doi.org/10.3417/2014017
Bosch, M., Simon, J., López-Pujol, J., & Blanché, C. (2016). A conspect of chromosome numbers in tribe Delphinieae (Ranunculaceae). Universitat de Barcelona Digital Repository. http://hdl.handle.net/2445/98702
Bräuchler, C., Meimberg, H., & Heubl, G. (2004). Molecular phylogeny of the genera Digitalis L. and Isoplexis (Lindley) Loudon (Veronicaceae) based on ITS- and trnL-F sequences. Plant Systematics and Evolution, 248, 111–128. https://doi.org/10.1007/s00606-004- 0145-z
Brochmann, C., Xiang, Q. Y., Brunsfeld, S. J., Soltis, D. E., & Soltis, P. S. (1998). Molecular evidence for polyploid origins of Saxifraga (Saxifragaceae): The narrow arctic endemic S. svalbardensis and its widespread allies. American Journal of Botany, 85, 135–143. https://doi.org/10.2307/2446562
Casazza, G., Barberis, G., Guerrina, M., Zappa, E., Mariotti, M., & Minuto, L. (2016). The plant endemism in the Maritime and Ligurian Alps. Biogeographia – The Journal of Integrative Biogeography, 31, 73–88. https://doi.org/10.21426/B631132738
Casazza, G., Barberis, G., & Minuto, L. (2005). Ecological characteristics and rarity of endemic plants of the Italian Maritime Alps. Biological Conservation, 123, 361–371. https://doi.org/10.1016/j.biocon.2004.12.005
Casazza, G., Zappa, E., Mariotti, M., Médail, F., & Minuto, L. (2016). Ecological and historical factors affecting distribution pattern and richness of endemic plant species: The case of the Maritime and Ligurian Alps hotspots. Diversity and Distributions, 14, 47–58. https://doi.org/10.1111/j.1472-4642.2007.00412.x
Clement, M., Posada, D., & Crandall, K. (2000). TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659. https://doi.org/10.1046/j.1365- 294x.2000.01020.x
Davis, D. (1965). Flora of Turkey and the East Aegean Islands. University Press.
Dénes, A. L., Kolcsár, L. P., Török, E., & Keresztes, L. (2015). Phylogeography of the micro-endemic Pedicia staryi (Insecta: Diptera): Evidence of relict biodiversity of the Carpathians. Biological Journal of the Linnean Society, 119, 719–731. https://doi.org/10.1111/bij.12667
Deng, T., Nie, Z. L., Drew, B. T., Volis, S., Kim, C., Xiang, C. L., Zhang, J. W., Wanh, Y. H., & Sun, H. (2015). Does the Arcto-Tertiary biogeographic hypothesis explain the disjunct distribution of Northern Hemisphere herbaceous plants? The case of Meehania (Lamiaceae). PLoS One, 10(2), Article e0117171. https://doi.org/10.1371/journal.pone.0117171
Després, L., Gielly, L., Redoutet, B., & Taberlet, P. (2003). Using AFLP to resolve phylogenetic relationships in a morphologically diversified plant species complex when nuclear and chloroplast sequences fail to reveal variability. Molecular Phylogenetics and Evolution, 27, 185–196. https://doi.org/10.1016/S1055-7903(02)00445-1
Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5), Article e88. https://doi.org/10.1371/journal.pbio.0040088
Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, Article 214. https://doi.org/10.1186/1471-2148-7- 214
Dumolin-Lapègue, S., Demesure, B., Fineschi, S., LeCorre, V., & Petit, R. J. (1997). Phylogeographic structure of white oaks throughout the European continent. Genetics, 146, 1475–1487.
Favarger, M. (1960). Sur l’emploi des nombres de chromosomes en géographie botanique historique [On the use of chromosome numbers in history of biogeography]. Berichte des Geobotanischen Institutes der ETH, Stiftung Rübel, 32, 119–146.
Felsenstein, J. (2004). Inferring phylogenies. Sinauer Associates.
Fitch, W. M. (1971). Toward defining the course of evolution: Minimum change for a specified tree topology. Systematic Zoology, 20, 406–416. https://doi.org/10.1093/sysbio/20.4.406
Fuertes-Aguilar, J., & Nieto-Feliner, G. (2003). Additive polymorphisms and reticulation in an ITS phylogeny of thrifts (Armeria, Plumbaginaceae). Molecular and Phylogenetic Evolution, 28(3), 430–447. https://doi.org/10.1016/S1055-7903(02)00301-9
Götz, E. (1967). Die Aconitum variegatum-Gruppe und ihre Bastarde in Europa [The Aconitum variegatum group and its hybrids in Europe]. Feddes Repertorium, 76(1–2), 1–62. https://doi.org/10.1002/fedr.19670760102
Grimm, G. W., & Denk, T. (2014). The Colchic region as refuge for relict tree lineages: Cryptic speciation in field maples. Turkish Journal of Botany, 38, 1050–1066. https://doi.org/10.3906/bot-1403-87
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321. https://doi.org/10.1093/sysbio/syq010
Hantemirova, E., Heinze, B., Knyazeva, S. G., Musaev, A. M., Lascoux, M., & Semerikov, V. L. (2016). A new Eurasian phylogeographical paradigm? Limited contribution of southern populations to the recolonization of high latitude populations in Juniperus communis L. (Cupressaceae). Journal of Biogeography, 44, 271–282. https://doi.org/10.1111/jbi.12867
Harzhauser, M., Daxner-Höck, G., & Piller, W. E. (2004). An integrated stratigraphy of the Pannonian (Late Miocene) in the Vienna Basin. Austrian Journal of Earth Sciences, 95–96, 6–19.
Hong, Y., Luo, Y., Gao, Q., Ren, C., Yuan, Q., & Yang, Q. E. (2017). Phylogeny and reclassification of Aconitum subgenus Lycoctonum (Ranunculaceae). PLoS One, 12(1), Article e0171038. https://doi.org/10.1371/journal.pone.0171038
Hörandl, E. (2006). Paraphyletic versus monophyletic taxa – Evolutionary versus cladistic classifications. Taxon, 55, 564–570. https://doi.org/10.2307/25065631
Huelsenbeck, J. P., & Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
Hultén, E. (1937). Outline of the history of arctic and boreal biota during the Quaternary period. Bokförlags aktiebolaget.
Huson, D. H., Rupp, R., & Scornavacca, C. (2010). Phylogenetic networks. Concepts, algorithms and applications. University Printing House. https://doi.org/10.1017/CBO9780511974076
Ilnicki, T., & Mitka, J. (2009). Chromosome numbers in Aconitum sect. Aconitum (Ranunculaceae) from the Carpathians. Caryologia, 62, 198–203. https://doi.org/10.1080/00087114.2004.10589685
Ilnicki, T., & Mitka, J. (2011). Chromosome numbers in Aconitum sect. Cammarum (Ranunculaceae) from the Carpathians. Caryologia, 64, 446–452. https://doi.org/10.1080/00087114.2011.10589812
Ivanov, D., Utescher, T., Mosbrugger, V., Syabryay, S., Djordević-Milutinović, D., & Molchanoff, S. (2011). Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe). Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 262–275. https://doi.org/10.1016/j.palaeo.2010.07.006
Jabbour, F., Craene, L. R. D., Nadot, S., & Damerval, C. (2009). Establishment of zygomorphy on an ontogenic spiral and evolution of perianth in the tribe Delphinieae (Ranunculaceae). Annals of Botany, 104, 809–822. https://doi.org/10.1093/aob/mcp162
Jabbour, F., & Renner, S. S. (2011a). Consolida and Aconitella are an annual clade of Delphinium (Ranunculaceae) that diversified in the Mediterranean basin and the Irano-Turanian region. Taxon, 60, 1029–1040. https://doi.org/10.1002/tax.604007
Jabbour, F., & Renner, S. S. (2011b). A phylogeny of Delphinieae (Ranunculaceae) shows that Aconitum is nested within Delphinium and that the Late Miocene transitions to long life cycles in the Himalayas and Southwest China coincide with bursts in diversification. Molecular Phylogenetics and Evolution, 62, 928–942. https://doi.org/10.1016/j.ympev.2011.12.005
Joachimiak, A., Ilnicki, T., & Mitka, J. (1999). Karyological studies on Aconitum lasiocarpum (Rchb.) Gayer (Ranunculaceae). Acta Biologica Cracoviensia, Series Botanica, 41, 205–211.
Joachimiak, A. J., Hasterok, R., Sliwinska, E., Musiał, K., & Grabowska-Joachimiak, A. (2018). FISH-aimed karyotype analysis in Aconitum subgen. Aconitum reveals excessive rDNA sites in tetraploid taxa. Protoplasma, 255, 1363–1372. https://doi.org/10.1007/s00709- 018-1238-9
Johansson, J. T. (1995). A revised chloroplast DNA phylogeny of the Ranunculaceae. Plant Systematics and Evolution – Supplementa, 9, 253–261. https://doi.org/10.1007/978-3- 7091-6612-3_25
Kadereit, J. W., Licht, W., & Uhink, C. H. (2008). Asian relationships of the flora of the European Alps. Plant Ecology and Diversity, 1, 171–179. https://doi.org/10.1080/17550870802328751
Kadota, Y. (1981). A taxonomic study of Aconitum (Ranunculaceae) of the Akaishi Mountain Range in Central Japan. Bulletin of the National Museum of Nature and Science, Series B (Botany), 7, 91–112.
Kadota, Y. (1987). A revision of Aconitum subgenus Aconitum (Ranunculaceae) in East Asia. Sanwa Shoyaku Company.
Keener, C. S., Reveal, J. L., Dutton, E., & Ziman, S. (1999). A list of suprageneric names in Ranunculaceae (Magnoliophyta). Taxon, 48, 497–506. https://doi.org/10.2307/1224562
Kim, K. J., & Jansen, K. J. (1998). A chloroplast DNA phylogeny of lilacs (Syringa, Oleaceae): Plastome groups show a strong correlation with crossing groups. American Journal of Botany, 85, 1338–1351. https://doi.org/10.2307/2446643
Kita, Y., & Ito, M. (2000). Nuclear ribosomal ITS sequences and phylogeny of East Asian Aconitum subgen. Aconitum (Ranunculaceae), with special reference to extensive polymorphism in individual plants. Plant Systematics and Evolution, 225, 1–13. https://doi.org/10.1007/BF00985455
Kita, Y., Ueda, K., & Kadota, Y. (1995). Molecular phylogeny and evolution of the Asian Aconitum subgen. Aconitum (Ranunculaceae). Journal of Plant Research, 108, 429–442. https://doi.org/10.1007/BF02344231
Krzakowa, M., & Szweykowski, J. (1976). A natural hybrid between two different Aconitum species (Ranunculaceae, Dicotyledoneae) from the Tatry Mountains. Bulletin de L’Academie Polonaise des Sciences, Série des Sciences Biologiques, 25, 223–225.
Kyrkou, I., Iriondo, J. M., & García-Fernández, A. (2015). A glacial survivor of the alpine Mediterranean region: Phylogenetic and phylogeographic insights into Silene ciliata Pourr. (Caryophyllaceae). PeerJ, 3, Article e1193. https://doi.org/10.7717/peerj.1193
Landis, J. B., Soltis, D. E., Li, Z., Marx, H. E., Barker, M. S., Tank, D. C., & Soltis, P. S. (2018). Impact on whole-genome duplication events on diversification rates in angiosperms. American Journal of Botany, 105, 348–363. https://doi.org/10.1002/ajb2.1060
Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410
Liangqian, L., & Kadota, Y. (2001). Aconitum L. In W. Zhyengi, P. H. Raven, & H. Deyuan (Eds.), Flora of China. Caryophylaceae through Lardizabalaceae (Vol. 6, pp. 149–222). Science Press; Missouri Botanical Garden.
Лyφepoв [Luferov], A. H. [A. N.]. (2000). Koнcпeкт кaвкaзcкиx видoв Aconitum (Ranunculaceae) [A synopsis of the Caucasian species of Aconitum (Ranunculaceae)]. Бoтaничecкий жypнaл [Botanicheskii Zhurnal], 85, 87–96.
Luo, Y., Zhang, F., & Yang, Q. E. (2005). Phylogeny of Aconitum subgenus Aconitum (Ranunculaceae) inferred from ITS sequences. Plant Systematics and Evolution, 252, 11–25. https://doi.org/10.1007/s00606-004-0257-5
Maharramova, E. H., Safarov, H. M., Kozlowski, G., Borsch, T., & Muller, L. A. (2015). Analysis of nuclear microsatellites reveals differentiation between Colchic and Hyrcanian populations of the wind-pollinated relict tree Zelkova carpinifolia (Ulmaceae). American Journal of Botany, 102, 119–128. https://doi.org/10.3732/ajb.1400370
Mai, D. H. (1995). Tertiäre Vegetationsgeschichte Europas [Tertiary vegetation history of Europe]. G. Fischer.
Médail, F., & Diadema, K. (2009). Glacial refugia influence plant diversity patterns in the Mediterranean Basin. Journal of Biogeography, 36, 1333–1345. https://doi.org/10.1111/j.1365-2699.2008.02051.x
Mitka, J. (2000). Systematyka Aconitum subgen. Aconitum w Karpatach Wschodnich [Systematics of Aconitum subgen. Aconitum in the Eastern Carpathians]. Roczniki Bieszczadzkie, 9, 79–116.
Mitka, J. (2002). Phenetic and geographic pattern of Aconitum sect. Napellus (Ranunculaceae) in the Eastern Carpathians – A numerical approach. Acta Societatis Botanicorum Poloniae, 71, 35–48. https://doi.org/10.5586/asbp.2002.005
Mitka, J. (2003). The genus Aconitum in Poland and adjacent countries – A phenetic-geographic study. Institute of Botany, Jagiellonian University.
Mitka, J., Binkiewicz, B., Stachurska-Swakoń, A., Novikov, A., & Rottensteiner, W. (2017). A synopsis of the genus Aconitum subgen. Aconitum in Europe. Studia Universitatis Babeş-Bolyai, 2017(Special issue), 166–167.
Mitka, J., Boroń, P., Novikoff, A., Wróblewska, A., & Binkiewicz, B. (2016). Two major groups of chloroplast DNA haplotypes in diploid and tetraploid Aconitum subgen. Aconitum (Ranunculaceae) in the Carpathians. Modern Phytomorphology, 9(Suppl.), 5–15. https://doi.org/10.5281/zenodo.159700
Mitka, J., Boroń, P., Wróblewska, A., & Bąba, W. (2015). AFLP analysis reveals infraspecific phylogenetic relationships and population genetic structure of two species of Aconitum in Central Europe. Acta Societatis Botanicorum Poloniae, 84, 267–276. https://doi.org/10.5586/asbp.2015.012
Mitka, J., & Starmühler, W. (2000). Phenetic variability of Aconitum lasiocarpum (Rchb.) Gáyer (Ranunculaceae): Extension of taxonomic and geographic borders. Acta Societatis Botanicorum Poloniae, 69, 145–155. https://doi.org/10.5586/asbp.2000.020
Mitka, J., Sutkowska, A., Ilnicki, T., & Joachimiak, A. (2007). Reticulate evolution of high- alpine Aconitum (Ranunculaceae) in the Eastern Sudetes and Western Carpathians (Central Europe). Acta Biologica Cracoviensia, Series Botanica, 49, 15–26.
Mucher, W. (1991). Der Bunte Eisenhut, Aconitum variegatum L. (Ranunculaceae), in der Steiermark [Aconitum variegatum L. (Ranunculaceae) in Styria]. Mitteilungen des Naturwissenschaftlichen Vereines für Steiermark, 121, 195–198.
Novikoff, A., & Mitka, J. (2011). Taxonomy and ecology of the genus Aconitum in the Ukrainian Carpathians. Wulfenia, 18, 37–61.
Novikoff, A., & Mitka, J. (2015). Anatomy of stem-node-leaf continuum in Aconitum (Ranunculaceae) in the Eastern Carpathians. Nordic Journal of Botany, 33, 633–640. https://doi.org/10.1111/njb.00893
Novikoff, A. V., Mitka, J., Kuzyarin, A., Orlov, O., & Ragulina, M. (2016). Some notes on the genus Aconitum in Chornohora Mts. Modern Phytomorphology, 9(Suppl.), 35–73. https://doi.org/10.5281/zenodo.159703
Ozenda, P. (2009). On the genesis of the plant population in the Alps: New or critical aspects. Comptes Rendus Biologies, 332, 1092–1103. https://doi.org/10.1016/j.crvi.2009.09.018
Park, S., An, B., & Park, S. (2020). Recurrent gene duplication in the angiosperm tribe Delphinieae (Ranunculaceae) inferred from intracellular gene transfer events and heteroplasmic mutations in the plastid matK gene. Scientific Reports, 10, Article 2720. https://doi.org/10.1038/s41598-020-59547-6
Pauli, H., Gottfried, M., Dirnböck, T., Dullinger, S., & Grabherr, G. (2003). Assessing the long-term dynamics of endemic plants at summit habitats. In L. Nagy, G. Grabherr, C. Körner, & D. B. A. Thompson (Eds.), Alpine biodiversity in Europe (pp. 195–207). Springer. https://doi.org/10.1007/978-3-642-18967-8_9
Paun, O., Lechnebach, C., Johansson, J. T., Lockhart, P., & Hörandl, E. (2005). Phylogenetic relationships and biogeography of Ranunculus and allied genera (Ranunculaceae) in the Mediterranean region and in the European Alpine System. Taxon, 54, 911–930. https://doi.org/10.2307/25065478
Pawłowski, B. (1929). Elementy geograficzne i pochodzenie flory tatrzańskiego piętra turniowego [Geographical elements and the origins of the Tatra’s high-alpine flora]. Rozprawy Wydziału Matematyczno-Przyrodniczego, Dział B, 68, 1–71.
Pearson, P. N., & Palmer, M. R. (2000). Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406, 695–699. https://doi.org/10.1038/35021000
Пoпoв [Popov], M. Γ. [M. G.]. (1983). Φилoгeния. Φлopoгeнeтикa. Φлopoгpaφия. Сиcтeмaтикa [Phylogeny, florogenetics, florography, systematics]. Hayкoвa дyмкa [Naukova Dumka].
Posada, D., & Crandall, K. A. (1998). Modeltest: Testing the model of DNA substitution. Bioinformatics, 14, 817–818. https://doi.org/10.1093/bioinformatics/14.9.817
Rambaut, A. (2016). FigTree v.1.4.3 [Computer software]. GitHub. https://github.com/rambaut/figtree/releases
Rambaut, A., Lam, T. T., Carvalho, L. M., & Pybus, O. G. (2016). Exploring the temporal structure of heterochronous sequences using TempEst. Virus Evolution, 2(1), Article vew007. https://doi.org/10.1093/ve/vew007
Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2014). Tracer, version 1.6 [Computer software]. http://beast.bio.ed.ac.uk/Tracer/
Rannala, B., & Yang, Z. (1996). Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution, 43, 304–311. https://doi.org/10.1007/BF02338839
Reichenbach, H. G. L. (1819). Uebersicht der Gattung Aconitum [Overview of the genus Aconitum]. Regensburg.
Ronikier, M. (2011). Biogeography of high-mountain plants in the Carpathians: An emerging phylogeographical perspective. Taxon, 60, 373–389. https://doi.org/10.1002/tax.602008
Ronquist, F., Huelsenbeck, J. P., & Mark, P. (2005). MrBayes 3.1 manual. University of California.
Sang, T., Crawford, D. J., & Stuessy, T. F. (1995). Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: Implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences of the United States of America, 92(15), 6813–6817. https://doi.org/10.1073/pnas.92.15.6813
Schmitt, T. (2009). Biogeographical and evolutionary importance of the European high mountain systems. Frontiers in Zoology, 6, Article 9. https://doi.org/10.1186/1742- 9994-6-9
Seitz, W. (1969). Die Taxonomie der Aconitum napellus-Gruppe in Europa [The taxonomy of the Aconitum napellus group in Europe]. Feddes Repertorium, 80, 1–76. https://doi.org/10.1002/fedr.19690800102
Seitz, W., Zinsmeister, H. D., & Abicht, M. (1972). Beitrag zur Systematik der Gattung Aconitum in Europe [Contribution to the systematics of the genus Aconitum in Europe]. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie, 92, 490–507.
Shaw, J., Lickey, E. B., Schilling, E. E., & Small, R. L. (2007). Comparison of whole chloroplast genome sequences to choose non-coding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. American Journal of Botany, 94, 275–288. https://doi.org/10.3732/ajb.94.3.275
Simon, J., Bosch, M., Molero, J., & Blanché, C. (1999). A conspect of chromosome numbers in tribe Delphinieae (Ranunculaceae). Universitat de Barcelona Digital Repository. http:// hdl.handle.net/2445/95875
Soltis, P., & Soltis, D. E. (2000). The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7051–7057. https://doi.org/10.1073/pnas.97.13.7051
Song, J., Chen, J. J., Wang, M., Chen, Y. Y., & Cui, B. K. (2016). Phylogeny and biogeography of the remarkable genus Bondarzewia (Basidiomycota, Russulaes). Scientific Reports, 6, Article 34568. https://doi.org/10.1038/srep34568
Stachurska-Swakoń, A., Cieślak, E., & Ronikier, M. (2013). Phylogeography of a subalpine tall-herb Ranunculus platanifolius (Ranunculaceae) reveals two main genetic lineages in the European mountains. Botanical Journal of the Linnean Society, 171, 413–428. https://doi.org/10.1111/j.1095-8339.2012.01323.x
Starmühler, W. (1996). Systematics and chorology of the genus Aconitum in the Bela krajina region (Slovenia). Hladnikia, 6, 5–16.
Starmühler, W. (2001). Die Gattung Aconitum in Bayern [The genus Aconitum in Bavaria]. Berichte der Bayerischen Botanischen Gesellschaft zur Erforschung der Heimischen Flora, 71, 99–118.
Starmühler, W., & Mitka, J. (2001). Systematics and chorology of Aconitum sect. Napellus and its hybrids in the Northern Carpathians and Forest Carpathians. Thaiszia – Journal of Botany, 10, 115–136.
Stebbins, G. L. (1984). Polyploidy and the distribution of the arctic-alpine flora: New evidence and a new approach. Botanica Helvetica, 94, 1–13. https://doi.org/10.5169/seals-65859
Stevens, P. F. (2001). Angiosperm Phylogeny Website. Version 14, July 2017. https://www.mobot.org/MOBOT/research/APweb/
Stuchlik, L., & Shatilova, I. I. (1987). Palynological study of neogene deposits of southern Poland and western Georgia. Acta Palaeobotanica, 27, 21–52.
Surina, B., Pfanzelt, S., Einzmann, H. J. R., & Albach, D. C. (2014). Bridging the Alps and the Middle East: Evolution, phylogeny and systematics of the genus Wulfenia (Plantaginaceae). Taxon, 63, 843–858. https://doi.org/10.12705/634.18
Sutkowska, A., Boroń, P., & Mitka, J. (2013). Natural hybrid zone of Aconitum species in the Western Carpathians: Linnaean taxonomy and ISSR fingerprinting. Acta Biologica Cracoviensia, Series Botanica, 55, 114–126. https://doi.org/10.2478/abcsb-2013-00015
Sutkowska, A., Boroń, P., Warzecha, T., Dębowski, J., & Mitka, J. (2017). Hybridization and introgression among three Aconitum (Ranunculaceae) species of different ploidy levels in the Tatra Mountains (Western Carpathians). Plant Species Biology, 32(4), 292–303. https://doi.org/10.1111/1442-1984.12162
Sutkowska, A., Warzecha, T., & Mitka, J. (2017). Genetic variation of Aconitum sect. Aconitum at a macrogeographical scale in the Carpathians. Polish Journal of Ecology, 65, 57–68. https://doi.org/10.3161/15052249PJE2017.65.1.006
Swofford, D. L. (2002). PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. https://doi.org/10.1093/molbev/mst197
Tamura, M. (1993). Ranunculaceae. In K. Kubitzky (Ed.), The families and genera of vascular plants. 2. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid families (pp. 563–583). Springer. https://doi.org/10.1007/978-3-662-02899-5_67
Tank, D. C., Eastman, J. M., Pennell, M. W., Soltis, P. S., Soltis, D. E., Hinchliff, C. E., Brown, J. W., Sessa, E. B., & Harmon, L. J. (2015). Nested radiations and the pulse of angiosperm diversification: Increased diversification rates often follow whole genome duplications. New Phytologist, 207, 454–467. https://doi.org/10.1111/nph.13491
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673
Turland, N. J., & Barrie, F. R. (2001). Family name listings modified in Appendix IB of the Saint Louis Code. Taxon, 50, 897–903. https://doi.org/10.2307/1223721
Tutin, T. G., Burges, N. A., Chater, A. O., Edmondson, J. R., Heywood, V. H., Moore, D. M., Valentine, D. H., Walters, S. M., & Webb, D. A. (Eds.). (1993). Flora Europaea. Vol. 1: Psilotaceae to Plantanaceae (2nd ed.). Cambridge University Press.
Utelli, A. B., Roy, B. A., & Baltisberger, M. (2000). Molecular and morphological analyses of European Aconitum species (Ranunculaceae). Plant Systematics and Evolution, 224, 195–212. https://doi.org/10.1007/BF00986343
Väre, H., Lampinen, R., Humphries, C., & Williams, P. (2003). Taxonomic diversity of vascular plants in the European alpine areas. In L. Nagy, G. Grabherr, C. Körner, & D. B. A. Thompson (Eds.), Alpine biodiversity in Europe (pp. 133–148). Springer. https://doi.org/10.1007/978-3-642-18967-8_5
Verlaque, R., Médail, F., Quézel, P., & Babinot, J. F. (1997). Endémisme végetal et paléogéographie dans le Bassin Méditerranéen [Plant endemism and palaeogeography in the Mediterranean Basin]. Geobios, 21, 159–166. https://doi.org/10.1016/S0016- 6995(97)80083-6
Volkova, P. A., Burlakov, Y. A., & Schanzer, I. A. (2020). Genetic variability of Prunus padus L. (Rosaceae) elaborates “a new Eurasian phylogeographical paradigm”. Plant Systematics and Evolution, 306, Article 1. https://doi.org/10.1007/s00606-020-01644-0
Wacławska-Ćwiertnia, K., & Mitka, J. (2016). Typification of Zapałowicz’s names in Aconitum section Aconitum. PhytoKeys, 58, 119–126. https://doi.org/10.3897/phytokeys.58.7110 Wang, L., Abbott, R. J., Zheng, W., Chen, P., Wang, Y., & Liu, J. (2009). History and evolution of alpine plants endemic to Qinghai-Tibetan Plateau: Aconitum gymnandrum (Ranunculaceae). Molecular Ecology, 18, 709–721. https://doi.org/10.1111/j.1365- 294X.2008.04055.x
Wang, W., Dilcher, D. L., Sun, G., Wang, H. S., & Chen, Z. D. (2016). Accelerated evolution of early angiosperms: Evidence from ranunculalean phylogeny by integrating living and fossil data. Journal of Systematics and Evolution, 54, 336–341. https://doi.org/10.1111/jse.12090
Wang, W., Lu, A. M., Ren, Y., Endress, M. E., & Chen, Z. D. (2009). Phylogeny and classification of Ranunculales: Evidence from four molecular loci and morphological data. Perspectives in Plant Ecology, Evolution and Systematics, 11(2), 81–110. https://doi.org/10.1016/j.ppees.2009.01.001
Wendel, J. F. (2015). The wondrous cycles of polyploidy in plants. American Journal of Botany, 102, 1753–1756. https://doi.org/10.3732/ajb.1500320
White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). Academic Press. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Winkler, M., Tribsch, A., Schneeweiss, G. M., Brodbeck, S., Gugerli, F., Holderegger, R., Abbott, R. J., & Schönswetter, P. (2012). Tales of unexpected: Phylogeography of the arctic-alpine model plant Saxifraga oppositifolia (Saxifragaceae) revisited. Molecular Ecology, 21, 4618–4630. https://doi.org/10.1111/j.1365-294X.2012.05705.x
Xiang, K. L., Aytaç, Z., Liu, Y., Espinosa, F., Jabbour, F., Byng, J. W., Zhang, C. F., Erst, A. S., & Wang, W. (2017). Recircumscription of Delphinium subg. Delphinium (Ranunculaceae) and implications for its biogeography. Taxon, 66, 554–566. https://doi.org/10.12705/663.3
Zając, M., & Zając, A. (2009). The geographical elements of native flora of Poland. Laboratory of Computer Chorology, Institute of Botany, Jagiellonian University.
Zhang, M. L., Sanderson, S. C., Sun, Y. X., Byalt, V. V., & Hao, X. L. (2014). Tertiary montane origin of the Central Asian flora, evidence inferred from cpDNA sequences of Atraphaxis (Polygonaceae). Journal of Integrative Plant Biology, 56, 1125–1135. https://doi.org/10.1111/jipb.12226
Zieliński, R. (1982a). An electrophoretic and cytological study of hybridization between Aconitum napellus subsp. skerisorae (2n = 32) and A. variegatum (2n = 16). I. Electrophoretic evidence. Acta Societatis Botanicorum Poloniae, 51, 453–464. https://doi.org/10.5586/asbp.1982.042
Zieliński, R. (1982b). An electrophoretic and cytological study of hybridization between Aconitum napellus subsp. skerisorae (2n = 32) and A. variegatum (2n = 16). II. Cytological evidence. Acta Societatis Botanicorum Poloniae, 51, 465–471. https://doi.org/10.5586/asbp.1982.043
DOI: https://doi.org/10.5586/asbp.8933
|
|
|