The Phylogenetic Position of Vincetoxicum pannonicum (Borhidi) Holub Supports the Species' Allopolyploid Hybrid Origin

Orsolya Horváth, Levente Laczkó, Zsuzsa Lisztes-Szabó, Attila Molnár V., Agnieszka Popiela, Gábor Sramkó

Abstract


The Pannonian endemic species Vincetoxicum pannonicum was described from specimens collected in Hungary and occurs at only few locations. It is considered “vulnerable” according to the International Red List. The chromosome set was reported to be tetraploid, and the species was hypothesized to be an allotetraploid hybrid of the Balkan species V. fuscatum and the Adriatic species hirundinaria subsp. adriaticum. We investigated the origin of V. pannonicum using molecular phylogenetic methods by separately analyzing the multicopy nuclear ribosomal internal transcribed spacer (nrITS) and the plastid-encoded trnH-psbA DNA regions and by evaluating discrepancies between the produced gene trees. Paralogs in the nrITS region clustered in two main groups, one of which was closest to V. fuscatum, and the other included V. hirundinaria subsp. adriaticum. According to trnH-psbA sequences, V. pannonicum and V. hirundinaria subsp. adriaticum formed a single group. Our results show that V. pannonicum diversified because of hybrid speciation, in which V. fuscatum was the pollen donor. We discovered a similar placement of V. maeoticum, which suggests a further hybridization event between V. fuscatum and a species of the V. hirundinaria group. Our genome-size estimate indicates almost sixfold larger genome size in V. pannonicum compared to the maternal diploid parent, suggesting hexaploidy; however, V. pannonicum is tetraploid. This may suggest cytological diploidization in the allopolyploid V. pannonicum. We observed substantial genetic distance between V. hirundinaria subsp. adriaticum and all other subspecies of V. hirundinaria, and we therefore propose that V. adriaticum should be regarded as a separate species.

Keywords


allopolyploidy; concerted evolution; diploidization; gene tree incongruence; hybridization; Pannonian endemism; nrITS cloning; vulnerable species

Full Text:

PDF XML (JATS)

References


Alix, K., Gérard, P. R., Schwarzacher, T., & Heslop-Harrison, J. S. (2017). Polyploidy and interspecific hybridization: Partners for adaptation, speciation and evolution in plants. Annals of Botany, 120, 183–194. https://doi.org/10.1093/aob/mcx079

Álvarez, I., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29, 417–434. https://doi.org/10.1016/S1055- 7903(03)00208-2

Bailey, C. D., Carr, T. G., Harris, S. A., & Hughes, C. E. (2003). Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution, 29, 435–455. https://doi.org/10.1016/j.ympev.2003.08.021

Baldwin, B. G., Sanderson, M. J., Porter, J. M., Wojciechowski, M. F., Campbell, C. S., & Donoghue, M. J. (1995). The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden, 82, 247–277. https://doi.org/10.2307/2399880

Bérces, S., Bíró, S., Novák, A., Halász, A., Dudás, G., & Pifkó, D. (2020). A magyar méreggyilok (Vincetoxicum pannonicum) állományfelmérése (2001–2019) [Results of the Vincetoxicum pannonicum population survey (2001–2019)]. Kitaibelia, 25, 9–18. https://doi.org/10.17542/kit.25.9

Borhidi, A. (1968). Karyological studies on Southeast European plant species. I. Acta Botanica Academiae Scientiarum Hungariae, 14, 253–260.

Borhidi, A. (2003). Magyarország növényföldrajzi képe [Plant biogeographic picture of Hungary]. In I. Láng, Z. Bedő, & L. Csete (Eds.), Magyar tudománytár 3. Növény, állat, élőhely [Hungarian Scientific Library 3. Plant, animal, habitat] (pp. 66–88). Kossuth Kiadó.

Borhidi, A. (2006). Magyarország növényföldrajzi képe [Plant biogeographic picture of Hungary]. In G. Fekete & Z. Varga (Eds.), Magyarország tájainak növényzete és állatvilága [Plant and animal life of Hungarian landscapes] (pp. 27–38). MTA Társadalomkutató Központ.

Borhidi, A., & Priszter, S. (1966). Eine neue Cynanchum-Art (C. pannonicum n. sp.) in Ungarn [A new Cynanchum species (C. pannonicum n. sp.) in Hungary]. Acta Botanica Academiae Scientiarum Hungariae, 12, 241–254.

Crandall, K. A. (1996). Multiple interspecies transmission of human and simian T-cell leukemia/lymphoma virus type I sequences. Molecular Biology and Evolution, 13, 115–131. https://doi.org/10.1093/oxfordjournals.molbev.a025550

Doležel, J., Greilhuber, J., & Suda, J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols, 2, 2233–2244. https://doi.org/10.1038/nprot.2007.310

Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. https://doi.org/10.1093/nar/gkh340

Fuertes-Aguilar, J., & Nieto-Feliner, G. (2003). Additive polymorphisms and reticulation in an ITS phylogeny of thrifts (Armeria, Plumbaginaceae). Molecular Phylogenetics and Evolution, 28, 430–447. https://doi.org/10.1016/S1055-7903(02)00301-9

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321. https://doi.org/10.1093/sysbio/syq010

Gulyás, G., Sramkó, G., Molnár, V. A., Rudnóy, S., Illyés, Z., Balázs, T., & Bratek, Z. (2005). Nuclear ribosomal DNA: Its paralogs as evidence of recent interspecific hybridization in the genus Ophrys (Orchidaceae). Acta Biologia Cracoviensia Series Botanica, 47, 61–67.

Guo, X., Thomas, D. C., & Saunders, R. M. (2018). Gene tree discordance and coalescent methods support ancient intergeneric hybridisation between Dasymaschalon and Friesodielsia (Annonaceae). Molecular Phylogenetics and Evolution, 127, 14–29. https://doi.org/10.1016/j.ympev.2018.04.009

Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267. https://doi.org/10.1093/molbev/msj030

Király, G. (2011). Vincetoxicum pannonicum. The IUCN Red List of Threatened Species, Article e.T161978A5522853. https://doi.org/10.2305/IUCN.UK.2011- 1.RLTS.T161978A5522853.en

Laczkó, L., Lukács, B. A., Mesterházy, A., Molnár, V. A., & Sramkó, G. (2019). Is Nymphaea lotus var. thermalis a Tertiary relict in Europe? Aquatic Botany, 155, 1–4. https://doi.org/10.1016/j.aquabot.2019.02.002

Lefort, V., Longueville, J. E., & Gascuel, O. (2017). SMS: Smart model selection in PhyML. Molecular Biology and Evolution, 34, 2422–2424. https://doi.org/10.1093/molbev/msx149

Leitch, I. J., & Bennett, M. D. (2004). Genome downsizing in polyploid plants. Biological Journal of the Linnean Society, 82, 651–663. https://doi.org/10.1111/j.1095- 8312.2004.00349.x

Liede-Schumann, S., Kong, H., Meve, U., & Thiv, M. (2012). Vincetoxicum and Tylophora (Apocynaceae: Asclepiadoideae: Asclepiadeae) – two sides of the same medal: Independent shifts from tropical to temperate habitats. Taxon, 61, 803–825. https://doi.org/10.1002/tax.614007

Ma, X. F., & Gustafson, J. P. (2005). Genome evolution of allopolyploids: A process of cytological and genetic diploidization. Cytogenetic and Genome Research, 109, 236–249. http://doi.org/10.1159/000082406

Markgraf, F. (1972). Asclepiadaceae. In T. Tutin, V. Heywood, A. Burges, & D. Valentine (Eds.), Flora Europaea (pp. 70–73). Cambridge University Press.

Müller, K. (2005). SeqState – primer design and sequence statistics for phylogenetic DNA data sets. Applied Bioinformatics, 4, 65–69. https://doi.org/10.2165/00822942-200504010-00008

Nieto-Feliner, G., & Rosselló, J. A. (2007). Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Molecular Phylogenetics and Evolution, 44, 911–919. https://doi.org/10.1016/j.ympev.2007.01.013

Paradis, E. (2010). PEGAS: An R package for population genetics with an integrated–modular approach. Bioinformatics, 26, 419–420. https://doi.org/10.1093/bioinformatics/btp696

Ronquist, F., Teslenko, M., Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029

Sang, T., Crawford, D. J., & Stuessy, T. F. (1997). Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany, 84(8), 1120–1136. https://doi.org/10.2307/2446155

Sang, T., & Zhang, D. (1999). Reconstructing hybrid speciation using sequences of low copy nuclear genes: Hybrid origins of five Paeonia species based on Adh gene phylogenies. Systematic Botany, 24, 148–163. https://doi.org/10.2307/2419546

Schönswetter, P., Suda, J., Popp, M., Weiss-Schneeweiss, H., & Brochmann, C. (2007). Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Molecular Phylogenetics and Evolution, 42, 92–103. https://doi.org/10.1016/j.ympev.2006.06.016

Serra, C., Valdés, B., Marcucci, R., & Tornadore, N. (2001). Mediterranean chromosome number reports 11 (1254–1263). Flora Mediterranea, 11, 466–473.

Shaw, J., Lickey, E. B., Bec, J. T., Farmer, S. B., Liu, W., Miller, J., & Small, R. L. (2005). The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany, 92(1), 142–166. https://doi.org/10.3732/ajb.92.1.142

Shaw, J., Lickey, E. B., Schilling, E. E., & Small, R. L. (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. American Journal of Botany, 94(3), 275–288. https://doi.org/10.3732/ajb.94.3.275

Simmons, M. P., & Ochoterena, H. (2000). Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology, 49, 369–381. https://doi.org/10.1093/sysbio/49.2.369

Small, R. L., Ryburn, J. A., Cronn, R. C., Seelanan, T., & Wendel, J. F. (1998). The tortoise and the hare: Choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. American Journal of Botany, 85(9), 1301–1315. https://doi.org/10.2307/2446640

Soltis, D. E., Johnson, L. A., & Looney, C. (1996). Discordance between ITS and chloroplast topologies in the Boykinia group (Saxifragaceae). Systematic Botany, 21, 169–185. https://doi.org/10.2307/2419746

Soltis, P. S., & Soltis, D. E. (2009). The role of hybridization in plant speciation. Annual Review of Plant Biology, 60, 561–588. https://doi.org/10.1146/annurev.arplant.043008.092039

Sramkó, G. (2014). Magyar méreggyilok. Vincetoxicum pannonicum (Borhidi) Holub 1967 [Hungarian swallow-wort. Vincetoxicum pannonicum (Borhidi) Holub 1967]. In L. Haraszthy (Ed.), Natura 2000 fajok és élőhelyek Magyarországon [Natura 2000 species and habitats in Hungary] (pp. 82–84). Pro Vértes Közalapítvány.

Strid, A., & Franzén, R. (1981). Chromosome number reports LXXIII. Taxon, 30, 829–842. https://doi.org/10.1002/j.1996-8175.1981.tb04309.x

Swofford, D. L. (2003). PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates.

Tate, J. A., & Simpson, B. B. (2003). Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Systematic Botany, 28, 723–737.

Wendel, J. (2000). Genome evolution in polyploids. In J. Doyle & B. Gaut (Eds.), Plant molecular evolution (pp. 225–249). Springer. https://doi.org/10.1007/978-94-011-4221- 2_12

Wendel, J. F., & Doyle, J. J. (1998). Phylogenetic incongruence: Window into genome history and molecular evolution. In D. E. Soltis, P. S. Soltis, & J. J. Doyle (Eds.), Molecular systematics of plants II (pp. 265–296). Springer. https://doi.org/10.1007/978-1-4615- 5419-6_10

White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Inns, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). Academic Press. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Yamashiro, T., Fukuda, T., Yokoyama, J., & Maki, M. (2004). Molecular phylogeny of Vincetoxicum (Apocynaceae-Asclepiadoideae) based on the nucleotide sequences of cpDNA and nrDNA. Molecular Phylogenetics and Evolution, 31, 689–700. https://doi.org/10.1016/j.ympev.2003.08.016




DOI: https://doi.org/10.5586/asbp.8931

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society