Oak leaf galls: Neuroterus numismalis and Cynips quercusfolii, their structure and ultrastructure

Leszek Stanisław Jankiewicz, Barbara Dyki, Aleksandra Machlańska, Franciszek Dubert

Abstract


Anatomy and surface ultrastructure of the galls induced on oak leaves by the insects – Neuroterus numismalis (Ol.) and Cynips (Diplolepis) quercusfolii L. – were investigated using a scanning electron microscope (SEM) and a light microscope (LM). The observations in SEM and in LM enabled a detailed description of these galls and comparison of their structure with that of the typical oak leaf. In N. numismalis gall, the external distal tissues were classified as similar to phellem (cork), phellogen, and phelloderm, and a lateral marginal tissue as parenchyma with the likely role of a storage tissue. In the young C. quercusfolii gall, the cells of internal, nutritive tissue, on which the larva is grazing, formed globules rising above the surface of larval chamber. Many of them seemed to be destroyed by the larval action. In the gall which attained half of its final size, the tissues near the larval chamber were already partly lignified. The microorganisms (mainly fungi) which live in the oak phyllosphere, occurred also on the galls. We believe that the deep changes in the morphogenetic program of a leaf, which are caused by the gall-forming insects, are impossible without the transfer and the integration of the insect genetic material with that of the host plant. We also postulate that a larva secrets as yet hypothetical substances, which redirect the nutrients transport from the leaf blade towards the gall and support its vital functions.

Keywords


Quercus robur; leaf surface ultrastructure; plant gall anatomy; plant gall induction

Full Text:

PDF

References


Mani MS. Ecology of plant galls. The Hague: Dr W. Junk Publishers; 1964. https://doi.org/10.1007/978-94-017-6230-4

Maresquelle HJ, Meyer J. Physiologie et morphogenése des galles d’origine animale (zoocécidies). In: Lang A, editor. Differenzierung und Entwicklung / Differentiation and Development. Berlin: Springer; 1965. p. 280–327. (Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology). https://doi.org/10.1007/978-3-642-50088-6_49

Meyer J, Maresquelle HJ, editors. Anatomie des galles. Handbuch der Pflanzenanatomie. Vol. XIII. Stuttgard: Gebrueder Borntaeger; 1983.

Meyer J. Irrigation vasculaire dans les galles. Bulletin de la Société Botanique de France. 1969;116(1 suppl):75–97. https://doi.org/10.1080/00378941.1969.10838711

Harper LJ, Schönrogge K, Lim KY, Francis P, Lichtenstein CP. Cynipid galls: insect-induced modifications of plant development create novel plant organs. Plant Cell Environ. 2004;27:327–335. https://doi.org/10.1046/j.1365-3040.2004.01145.x

Raman A. Insect–plant interaction: the gall factor. In: Seckbach J, Dubinsky Z, editors. All flesh is grass. Heidelberg: Springer; 2010. p. 119–146. (Cellular Origin, Life in Extreme Habitats and Astrobiology; vol 16). https://doi.org/10.1007/978-90-481-9316-5_5

Raman A. Morphogenesis of insect-induced plant galls: facts and questions. Flora. 2011;206:517–533. https://doi.org/10.1016/j.flora.2010.08.004

Hough JS. Studies on the common spangle gall of oak. I. The developmental history. New Phytol. 1952;52:149–177. https://doi.org/10.1111/j.1469-8137.1953.tb05216.x

Kovácsne Koncz N, Szabó LJ, Jámbrik K, M-Hamvas M. Histologial study of quercus galls of Neuroterus quercusbaccarum (Linnaeus 1758) (Hymenoptera: Cynipidae). Acta Biologica Szegediensis. 2011;55:247–253.

LeBlanc DA, Lacroix CR. Developmental potential of galls induced by Diplolepis rosaefolii (Hymenoptera, Cynipidae) on the leaves of Rosa virginiana and the influence of Periclistus species on the Diplolepis rosaefolii galls. Int J Plant Sci. 2001;162:29–46.

Maresquelle HJ. La Morphogenèse dans l’impasse? Réflexions d’un cécidologue. Bulletin de la Société Botanique de France. Actualités Botaniques. 1980;127:9–16.

Mendes de Sá CE, Silveira FA, Santos JC, dos santos Isaias RM, Fernandes GW. Anatomical and developmental aspects of leaf gall induced by Schizomyia macrocapillata Maia (Diptera: Cecidomyiidae) on Bauhinia brevipes Vogel (Fabaceae). Rev Bras Bot. 2009;32:319–327. https://doi.org/10.1590/S0100-84042009000200011

Hartley SE. Are gall insects large rhizobia? Oikos. 1999;84:333–342. https://doi.org/10.2307/3546731

Miles PW. Aphid saliva. Biol Rev. 1999;74:41–85. https://doi.org/10.1017/S0006323198005271

Wrzesińska D. Foliofagi tworzące wyrośla na Quercus robur (L.). Bydgoszcz: Wydawnictwa Uczelniane Uniwersytetu Technologiczno-Przyrodniczego; 2013. (Rozprawy; vol 167).

Pathan AK, Bond J, Gaskin RE. Sample preparation for scanning electron microscopy of plant surfaces – horses for courses. Micron. 2008;39:1049–1061. https://doi.org/10.1016/j.micron.2008.05.006

Gerlach D. Zarys mikrotechniki botanicznej. Warszawa: Państwowe Wydawnictwo Rolnicze i Leśne; 1972.

Jankiewicz LS. Wnikanie substancji chemicznych do części nadziemnych rośliny In: Jankiewicz LS, editor. Fizjologia roślin sadowniczych. Warszawa: Państwowe Wydawnictwo Naukowe; 1979. p. 814–844.

Metcalfe CR, Chalk L. Anatomy of the dicotyledons, Vol. I. 2nd ed. Oxford: Clarendon Press; 1979.

Hejnowicz Z. Anatomia i histogeneza roślin naczyniowych. Warszawa: Wydawnictwo Naukowe PWN; 2012.

Esau K. Plant anatomy. New York, NY; John Wiley & Sons; 1967.

Dyki B, Jankiewicz LS, Staniaszek M. Anatomical structure and surface micromorphology of tomatillo leaf and flower (Physalis ixocarpa Brot., Solanaceae). Acta Soc Bot Pol. 1998;67:181–191. https://doi.org/10.5586/asbp.1998.021

Albert S, Rana S, Gandhi D. Anatomy and ontogenesis of foliar galls induced by Odinadiplosis odinae (Diptera: Cecidomyiidae) on Lannea coramandelica (Anacardiaceae). Acta Entomologica Serbica. 2013;18:161–175.

Bronner R. Propriétés lytiques des oeufs de Biorhiza pallida Ol. . Comptes Rendus de l’Académie des Sciences. 1973;276:189–192.

Pitzschke A, Hirt H. New insight into an old story: Agrobacterium-induced tumor formation in plants by plant transformation. EMBO J. 2010;29:1021–1032. https://doi.org/10.1038/emboj.2010.8

Nester EW, Gordon MP, Amasino RM, Yanofsky MF. Crown gall: a molecular and physiological analysis. Ann Rev Plant Physiol. 1984;35:387–413. https://doi.org/10.1146/annurev.pp.35.060184.002131

Taiz L, Zeiger E. Plant physiology. Sunderland, MA: Sinauer Associates; 1998.

Schönrogge K, Harper LJ, Brooks SE, Schorthouse JD, Lichtgenstein CP. Reprogramming plant development: two approaches to study the molecular mechanism of gall formation. In: Csóka G, Mattson WJ, Stone GN, Price PW, editors. The biology of gall-inducing arthropods. Saint Paul, MN: U.S. Dept. of Agriculture, Forest Service, North Central Research Station; 1998. p. 153–160. (General Technical Report NC; vol 199).

Jankiewicz LS, Plich H, Antoszewski R. Preliminary studies on the translocation of 14C labeled assimilates and 32PO43− towards the gall evoked by Cynips (Diplolepis) quercus-folii L. on oak leaves. Marcelia (Strasbourg). 1970;36:163–172.

Seth AK, Wareing PF. Hormone-directed transport of metabolites and its possible role in plant senescence. J Exp Bot. 1967;18:65–77. https://doi.org/10.1093/jxb/18.1.65

Starck Z. Transport i dystrybucja substancji pokarmowych w roślinach. Warszawa: Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego; 2003.

Aloni R. Phytohormonal mechanisms that control wood quality formation in young and mature trees. In: Entwistle K, Harris P, Walker J, editors. The compromised wood workshop 2007. Christchurch: Wood Technology Research Centre, University of Canterbury; 2007. p. 1–20.

Malinowski R. Understanding of leaf development – the science of complexity. Plants. 2013;2(3):396–415.