Plastid origin: who, when and why?

Chuan Ku, Mayo Roettger, Verena Zimorski, Shijulal Nelson-Sathi, Filipa L. Sousa, William F. Martin

Abstract


The origin of plastids is best explained by endosymbiotic theory, which dates back to the early 1900s. Three lines of evidence based on protein import machineries and molecular phylogenies of eukaryote (host) and cyanobacterial (endosymbiont) genes point to a single origin of primary plastids, a unique and important event that successfully transferred two photosystems and oxygenic photosynthesis from prokaryotes to eukaryotes. The nature of the cyanobacterial lineage from which plastids originated has been a topic of investigation. Recent studies have focused on the branching position of the plastid lineage in the phylogeny based on cyanobacterial core genes, that is, genes shared by all cyanobacteria and plastids. These studies have delivered conflicting results, however. In addition, the core genes represent only a very small portion of cyanobacterial genomes and may not be a good proxy for the rest of the ancestral plastid genome. Information in plant nuclear genomes, where most genes that entered the eukaryotic lineage through acquisition from the plastid ancestor reside, suggests that heterocyst-forming cyanobacteria in Stanier’s sections IV and V are most similar to the plastid ancestor in terms of gene complement and sequence conservation, which is in agreement with models suggesting an important role of nitrogen fixation in symbioses involving cyanobacteria. Plastid origin is an ancient event that involved a prokaryotic symbiont and a eukaryotic host, organisms with different histories and genome evolutionary processes. The different modes of genome evolution in prokaryotes and eukaryotes bear upon our interpretations of plastid phylogeny.

Keywords


cyanobacteria; endosymbiosis; evolution; gene transfer; genomics; organelle; photosynthesis; phylogeny

Full Text:

PDF

References


Allen JF. Photosynthesis of ATP – electrons, proton pumps, rotors, and poise. Cell. 2002;110(3):273–276. http://dx.doi.org/10.1016/S0092-8674(02)00870-X

Hagelstein P, Sieve B, Klein M, Jans H, Schultz G. Leucine synthesis in chloroplasts: leucine/isoleucine aminotransferase and valine aminotransferase are different enzymes in spinach chloroplasts. J Plant Physiol. 1997;150(1-2):23–30. http://dx.doi.org/10.1016/S0176-1617(97)80176-9

Zrenner R, Stitt M, Sonnewald U, Boldt R. Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol. 2006;57(1):805–836. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105421

Wang Z, Benning C. Chloroplast lipid synthesis and lipid trafficking through ER–plastid membrane contact sites. Biochem Soc Trans. 2012;40(2):457–463. http://dx.doi.org/10.1042/BST20110752

Gerdes S, Lerma-Ortiz C, Frelin O, Seaver SMD, Henry CS, de Crecy-Lagard V, et al. Plant B vitamin pathways and their compartmentation: a guide for the perplexed. J Exp Bot. 2012;63(15):5379–5395. http://dx.doi.org/10.1093/jxb/ers208

Mereschkowsky C. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Cent. 1905;25(18):593–604.

Martin W, Kowallik K. Annotated English translation of Mereschkowsky’s 1905 paper “Über Natur und Ursprung der Chromatophoren imPflanzenreiche.” Eur J Phycol. 1999;34(3):287–295. http://dx.doi.org/10.1080/09670269910001736342

Sagan L. On the origin of mitosing cells. J Theor Biol. 1967;14(3):225–274. http://dx.doi.org/10.1016/0022-5193(67)90079-3

Margulis L. Origin of eukaryotic cells. New Haven, CT: Yale University Press; 1970.

Wallin IE. Symbionticism and the origin of species. London: Tindall and Cox; 1927.

Sapp J. Evolution by association: a history of symbiosis. New York, NY: Oxford University Press; 1994.

Williams TA, Foster PG, Cox CJ, Embley TM. An archaeal origin of eukaryotes supports only two primary domains of life. Nature. 2013;504(7479):231–236. http://dx.doi.org/10.1038/nature12779

Raff RA, Mahler HR. The non symbiotic origin of mitochondria. Science. 1972;177(4049):575–582. http://dx.doi.org/10.1126/science.177.4049.575

Bogorad L. Evolution of organelles and eukaryotic genomes. Science. 1975;188(4191):891–898. http://dx.doi.org/10.1126/science.1138359

Cavalier-Smith T. The origin of nuclei and of eukaryotic cells. Nature. 1975;256(5517):463–468. http://dx.doi.org/10.1038/256463a0

Gray MW, Doolittle WF. Has the endosymbiont hypothesis been proven? Microbiol Rev. 1982;46(1):1–42.

Raven PH. A multiple origin for plastids and mitochondria: many independent symbiotic events may have been involved in the origin of these cellular organelles. Science. 1970;169(3946):641–646. http://dx.doi.org/10.1126/science.169.3946.641

Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD. The origin of plastids. Philos Trans R Soc Lond B Biol Sci. 2008;363(1504):2675–2685. http://dx.doi.org/10.1098/rstb.2008.0050

Stiller JW. Toward an empirical framework for interpreting plastid evolution. J Phycol. 2014;50(3):462–471. http://dx.doi.org/10.1111/jpy.12178

Zimorski V, Ku C, Martin WF, Gould SB. Endosymbiotic theory for organelle origins. Curr Opin Microbiol. 2014;22:38–48. http://dx.doi.org/10.1016/j.mib.2014.09.008

Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol. 2005;52(5):399–451. http://dx.doi.org/10.1111/j.1550-7408.2005.00053.x

McFadden GI, van Dooren GG. Evolution: red algal genome affirms a common origin of all plastids. Curr Biol. 2004;14(13):R514–R516. http://dx.doi.org/10.1016/j.cub.2004.06.041

Steiner JM, Yusa F, Pompe JA, Löffelhardt W. Homologous protein import machineries in chloroplasts and cyanelles. Plant J. 2005;44(4):646–652. http://dx.doi.org/10.1111/j.1365-313X.2005.02559.x

Shi LX, Theg SM. The chloroplast protein import system: from algae to trees. Biochim Biophys Acta. 2013;1833(2):314–331. http://dx.doi.org/10.1016/j.bbamcr.2012.10.002

Martin W, Brinkmann H, Savonna C, Cerff R. Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA. 1993;90(18):8692–8696. http://dx.doi.org/10.1073/pnas.90.18.8692

Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet. 2004;5(2):123–135. http://dx.doi.org/10.1038/nrg1271

Gould SB, Waller RF, McFadden GI. Plastid evolution. Annu Rev Plant Biol. 2008;59(1):491–517. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092915

Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA. 2002;99(19):12246–12251. http://dx.doi.org/10.1073/pnas.182432999

Rodríguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, et al. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol. 2005;15(14):1325–1330. http://dx.doi.org/10.1016/j.cub.2005.06.040

Criscuolo A, Gribaldo S. Large-scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Mol Biol Evol. 2011;28(11):3019–3032. http://dx.doi.org/10.1093/molbev/msr108

Schirrmeister BE, Antonelli A, Bagheri HC. The origin of multicellularity in cyanobacteria. BMC Evol Biol. 2011;11(1):45. http://dx.doi.org/10.1186/1471-2148-11-45

Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci USA. 2013;110(3):1053–1058. http://dx.doi.org/10.1073/pnas.1217107110

Li B, Lopes JS, Foster PG, Embley TM, Cox CJ. Compositional biases among synonymous substitutions cause conflict between gene and protein trees for plastid origins. Mol Biol Evol. 2014;31(7):1697–1709. http://dx.doi.org/10.1093/molbev/msu105

Ochoa de Alda JAG, Esteban R, Diago ML, Houmard J. The plastid ancestor originated among one of the major cyanobacterial lineages. Nat Commun. 2014;5:4937. http://dx.doi.org/10.1038/ncomms5937

Katz LA, Grant JR, Parfrey LW, Burleigh JG. Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Syst Biol. 2012;61(4):653–660. http://dx.doi.org/10.1093/sysbio/sys026

Jackson CJ, Reyes-Prieto A. The mitochondrial genomes of the glaucophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis: multilocus phylogenetics suggests a monophyletic archaeplastida. Genome Biol Evol. 2014;6(10):2774–2785. http://dx.doi.org/10.1093/gbe/evu218

Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol. 1979;111(1):1–61. http://dx.doi.org/10.1099/00221287-111-1-1

Falcón LI, Magallón S, Castillo A. Dating the cyanobacterial ancestor of the chloroplast. ISME J. 2010;4(6):777–783. http://dx.doi.org/10.1038/ismej.2010.2

Dagan T, Roettger M, Stucken K, Landan G, Koch R, Major P, et al. Genomes of stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol Evol. 2013;5(1):31–44. http://dx.doi.org/10.1093/gbe/evs117

Mareš J, Hrouzek P, Kaňa R, Ventura S, Strunecký O, Komárek J. The primitive thylakoid-less cyanobacterium Gloeobacter is a common rock-dwelling organism. PLoS ONE. 2013;8(6):e66323. http://dx.doi.org/10.1371/journal.pone.0066323

Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc Natl Acad Sci USA. 2013;110(5):1791–1796. http://dx.doi.org/10.1073/pnas.1209927110

Sánchez-Baracaldo P, Ridgwell A, Raven JA. A neoproterozoic transition in the marine nitrogen cycle. Curr Biol. 2014;24(6):652–657. http://dx.doi.org/10.1016/j.cub.2014.01.041

Soo RM, Skennerton CT, Sekiguchi Y, Imelfort M, Paech SJ, Dennis PG, et al. An expanded genomic representation of the phylum Cyanobacteria. Genome Biol Evol. 2014;6(5):1031–1045. http://dx.doi.org/10.1093/gbe/evu073

Mareš J, Komárek J, Compère P, Oren A. Validation of the generic name Gloeobacter Rippka et al. 1974, Cyanophyceae. Cryptogam Algol. 2013;34(3):255–262. http://dx.doi.org/10.7872/crya.v34.iss3.2013.255

Deschamps P, Colleoni C, Nakamura Y, Suzuki E, Putaux JL, Buleon A, et al. Metabolic symbiosis and the birth of the plant kingdom. Mol Biol Evol. 2008;25(3):536–548. http://dx.doi.org/10.1093/molbev/msm280

Deusch O, Landan G, Roettger M, Gruenheit N, Kowallik KV, Allen JF, et al. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol Biol Evol. 2008;25(4):748–761. http://dx.doi.org/10.1093/molbev/msn022

Nelissen B, van de Peer Y, Wilmotte A, de Wachter R. An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol. 1995;12(6):1166–1173.

Knoll AH. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb Perspect Biol. 2014;6(1):a016121. http://dx.doi.org/10.1101/cshperspect.a016121

Butterfield NJ. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology. 2000;26(3):386–404. http://dx.doi.org/10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2

Yoon HS. A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol. 2004;21(5):809–818. http://dx.doi.org/10.1093/molbev/msh075

Parfrey LW, Lahr DJG, Knoll AH, Katz LA. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci USA. 2011;108(33):13624–13629. http://dx.doi.org/10.1073/pnas.1110633108

Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik KV. Gene transfer to the nucleus and the evolution of chloroplasts. Nature. 1998;393(6681):162–165. http://dx.doi.org/10.1038/30234

Lockhart PJ, Howe CJ, Barbrook AC, Larkum AWD, Penny D. Spectral analysis, systematic bias, and the evolution of chloroplasts. Mol Biol Evol. 1999;16(4):573.

Petersen J, Brinkmann H, Bunk B, Michael V, Päuker O, Pradella S. Think pink: photosynthesis, plasmids and the Roseobacter clade: plasmids and phototrophy. Environ Microbiol. 2012;14(10):2661–2672. http://dx.doi.org/10.1111/j.1462-2920.2012.02806.x

Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P, Krauß N. A common ancestor for oxygenic and anoxygenic photosynthetic systems. J Mol Biol. 1998;280(2):297–314. http://dx.doi.org/10.1006/jmbi.1998.1824

Sadekar S. Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol. 2006;23(11):2001–2007. http://dx.doi.org/10.1093/molbev/msl079

Allen JF. A redox switch hypothesis for the origin of two light reactions in photosynthesis. FEBS Lett. 2005;579(5):963–968. http://dx.doi.org/10.1016/j.febslet.2005.01.015

Olson JM, Blankenship RE. Thinking about the evolution of photosynthesis. Photosynth Res. 2004;80(1–3):373–386. http://dx.doi.org/10.1023/B:PRES.0000030457.06495.83

Sousa FL, Shavit-Grievink L, Allen JF, Martin WF. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol Evol. 2013;5(1):200–216. http://dx.doi.org/10.1093/gbe/evs127

Blankenship RE. Molecular evidence for the evolution of photosynthesis. Trends Plant Sci. 2001;6(1):4–6. http://dx.doi.org/10.1016/S1360-1385(00)01831-8

Hohmann-Marriott MF, Blankenship RE. Evolution of photosynthesis. Annu Rev Plant Biol. 2011;62(1):515–548. http://dx.doi.org/10.1146/annurev-arplant-042110-103811

Oren A, Padan E. Induction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica. J Bacteriol. 1978;133(2):558–563.

Blankenship RE, Hartman H. The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci. 1998;23(3):94–97. http://dx.doi.org/10.1016/S0968-0004(98)01186-4

Raymond J, Blankenship R. The origin of the oxygen-evolving complex. Coord Chem Rev. 2008;252(3-4):377–383. http://dx.doi.org/10.1016/j.ccr.2007.08.026

Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A. The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci USA. 2001;98(5):2170–2175. http://dx.doi.org/10.1073/pnas.061514798

Sauer K, Yachandra VK. A possible evolutionary origin for the Mn4 cluster of the photosynthetic water oxidation complex from natural MnO2 precipitates in the early ocean. Proc Natl Acad Sci USA. 2002;99(13):8631–8636. http://dx.doi.org/10.1073/pnas.132266199

Allen JF, Martin W. Evolutionary biology: out of thin air. Nature. 2007;445(7128):610–612. http://dx.doi.org/10.1038/445610a

Hakala M. Photoinhibition of manganese enzymes: insights into the mechanism of photosystem II photoinhibition. J Exp Bot. 2006;57(8):1809–1816. http://dx.doi.org/10.1093/jxb/erj189

Kupitz C, Basu S, Grotjohann I, Fromme R, Zatsepin NA, Rendek KN, et al. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature. 2014;513(7517):261–265. http://dx.doi.org/10.1038/nature13453

Johnson JE, Webb SM, Thomas K, Ono S, Kirschvink JL, Fischer WW. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc Natl Acad Sci USA. 2013;110(28):11238–11243. http://dx.doi.org/10.1073/pnas.1305530110

Khorobrykh A, Dasgupta J, Kolling DRJ, Terentyev V, Klimov VV, Dismukes GC. Evolutionary origins of the photosynthetic water oxidation cluster: bicarbonate permits Mn2+ photo-oxidation by anoxygenic bacterial reaction centers. Chembiochem. 2013;14(14):1725–1731. http://dx.doi.org/10.1002/cbic.201300355

Allen JP, Olson TL, Oyala P, Lee WJ, Tufts AA, Williams JC. Light-driven oxygen production from superoxide by Mn-binding bacterial reaction centers. Proc Natl Acad Sci USA. 2012;109(7):2314–2318. http://dx.doi.org/10.1073/pnas.1115364109

Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature. 2003;424(6952):1042–1047. http://dx.doi.org/10.1038/nature01947

Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405(6784):299–304. http://dx.doi.org/10.1038/35012500

Dagan T, Artzy-Randrup Y, Martin W. Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci USA. 2008;105(29):10039–10044. http://dx.doi.org/10.1073/pnas.0800679105

Doolittle WF. Phylogenetic classification and the universal tree. Science. 1999;284(5423):2124–2128. http://dx.doi.org/10.1126/science.284.5423.2124

Doolittle WF, Bapteste E. Pattern pluralism and the Tree of Life hypothesis. Proc Natl Acad Sci USA. 2007;104(7):2043–2049. http://dx.doi.org/10.1073/pnas.0610699104

Paul S, Dutta A, Bag SK, Das S, Dutta C. Distinct, ecotype-specific genome and proteome signatures in the marine cyanobacteria Prochlorococcus. BMC Genomics. 2010;11(1):103. http://dx.doi.org/10.1186/1471-2164-11-103

Thiergart T, Landan G, Schenk M, Dagan T, Martin WF. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol Evol. 2012;4(4):466–485. http://dx.doi.org/10.1093/gbe/evs018

Martin W, Müller M. The hydrogen hypothesis for the first eukaryote. Nature. 1998;392(6671):37–41. http://dx.doi.org/10.1038/32096

McInerney JO, O’Connell MJ, Pisani D. The hybrid nature of the eukaryota and a consilient view of life on Earth. Nat Rev Microbiol. 2014;12(6):449–455. http://dx.doi.org/10.1038/nrmicro3271

Williams TA, Embley TM. Archaeal “dark matter” and the origin of eukaryotes. Genome Biol Evol. 2014;6(3):474–481. http://dx.doi.org/10.1093/gbe/evu031

Holland HD. The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci. 2006;361(1470):903–915. http://dx.doi.org/10.1098/rstb.2006.1838

Johnston DT, Wolfe-Simon F, Pearson A, Knoll AH. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age. Proc Natl Acad Sci USA. 2009;106(40):16925–16929. http://dx.doi.org/10.1073/pnas.0909248106

Kasting J. Earth’s early atmosphere. Science. 1993;259(5097):920–926. http://dx.doi.org/10.1126/science.11536547

Rai AN, Söderbäck E, Bergman B. Cyanobacterium-plant symbioses. New Phytol. 2000;147(3):449–481. http://dx.doi.org/10.1046/j.1469-8137.2000.00720.x

Rikkinen J. Lichen guilds share related cyanobacterial symbionts. Science. 2002;297(5580):357–357. http://dx.doi.org/10.1126/science.1072961

Prechtl J. Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol Biol Evol. 2004;21(8):1477–1481. http://dx.doi.org/10.1093/molbev/msh086

Ran L, Larsson J, Vigil-Stenman T, Nylander JAA, Ininbergs K, Zheng WW, et al. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS ONE. 2010;5(7):e11486. http://dx.doi.org/10.1371/journal.pone.0011486

Chiu WL. Nitrogen deprivation stimulates symbiotic gland development in Gunnera manicata. Plant Physiol. 2005;139(1):224–230. http://dx.doi.org/10.1104/pp.105.064931

Rai AN, Bergman B, Rasmussen U, editors. Cyanobacteria in symbiosis. Dordrecht: Kluwer Academic Publishers; 2002.

Costa JL, Romero EM, Lindblad P. Sequence based data supports a single Nostoc strain in individual coralloid roots of cycads. FEMS Microbiol Ecol. 2004;49(3):481–487. http://dx.doi.org/10.1016/j.femsec.2004.05.001

Allen JF, Raven JA. Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J Mol Evol. 1996;42(5):482–492. http://dx.doi.org/10.1007/BF02352278

Kneip C, Lockhart P, Voß C, Maier UG. Nitrogen fixation in eukaryotes – new models for symbiosis. BMC Evol Biol. 2007;7(1):55. http://dx.doi.org/10.1186/1471-2148-7-55

Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320(5879):1034–1039. http://dx.doi.org/10.1126/science.1153213

Usher KM, Bergman B, Raven JA. Exploring cyanobacterial mutualisms. Annu Rev Ecol Evol Syst. 2007;38(1):255–273. http://dx.doi.org/10.1146/annurev.ecolsys.38.091206.095641

Facchinelli F, Colleoni C, Ball SG, Weber APM. Chlamydia, cyanobiont, or host: who was on top in the ménage à trois? Trends Plant Sci. 2013;18(12):673–679. http://dx.doi.org/10.1016/j.tplants.2013.09.006

Salzberg SL. Microbial genes in the human genome: lateral transfer or gene loss? Science. 2001;292(5523):1903–1906. http://dx.doi.org/10.1126/science.1061036

Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D, et al. Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc Natl Acad Sci USA. 2008;105(46):17867–17871. http://dx.doi.org/10.1073/pnas.0804968105

Wagele H, Deusch O, Handeler K, Martin R, Schmitt V, Christa G, et al. Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobranchus ocellatus does not entail lateral transfer of algal nuclear genes. Mol Biol Evol. 2011;28(1):699–706. http://dx.doi.org/10.1093/molbev/msq239

de Vries J, Christa G, Gould SB. Plastid survival in the cytosol of animal cells. Trends Plant Sci. 2014;19(6):347–350. http://dx.doi.org/10.1016/j.tplants.2014.03.010

Hannaert V, Saavedra E, Duffieux F, Szikora JP, Rigden DJ, Michels PAM, et al. Plant-like traits associated with metabolism of Trypanosoma parasites. Proc Natl Acad Sci USA. 2003;100(3):1067–1071. http://dx.doi.org/10.1073/pnas.0335769100

Martin W, Borst P. Secondary loss of chloroplasts in trypanosomes. Proc Natl Acad Sci USA. 2003;100(3):765–767. http://dx.doi.org/10.1073/pnas.0437776100

Berriman M. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309(5733):416–422. http://dx.doi.org/10.1126/science.1112642

Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, et al. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 2006;4(9):e286. http://dx.doi.org/10.1371/journal.pbio.0040286

Moreira D, Deschamps P. What was the real contribution of endosymbionts to the eukaryotic nucleus? Insights from photosynthetic eukaryotes. Cold Spring Harb Perspect Biol. 2014;6(7):a016014. http://dx.doi.org/10.1101/cshperspect.a016014

Martin W. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. Bioessays. 1999;21(2):99–104. http://dx.doi.org/10.1002/(SICI)1521-1878(199902)21:2<99::AID-BIES3>3.0.CO;2-B

Esser C, Martin W, Dagan T. The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biol Lett. 2007;3(2):180–184. http://dx.doi.org/10.1098/rsbl.2006.0582

Richards TA, Archibald JM. Cell evolution: gene transfer agents and the origin of mitochondria. Curr Biol. 2011;21(3):R112–R114. http://dx.doi.org/10.1016/j.cub.2010.12.036

Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, et al. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature. 1997;387(6632):493–497. http://dx.doi.org/10.1038/387493a0

Esser C. A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol. 2004;21(9):1643–1660. http://dx.doi.org/10.1093/molbev/msh160

Thiergart T, Landan G, Martin WF. Concatenated alignments and the case of the disappearing tree. BMC Evol Biol. 2015 (in press).

Pisani D, Cotton JA, McInerney JO. Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol Biol Evol. 2007;24(8):1752–1760. http://dx.doi.org/10.1093/molbev/msm095




DOI: https://doi.org/10.5586/asbp.2014.045

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society