How a river course influences the species richness and ecological requirements on two opposite riverbanks in a forest area

Bożenna Czarnecka, Anna Rysiak, Łukasz Chabudziński

Abstract


The goal of the present research was to find correlations between the topographic attributes of a river valley and local ground-floor vegetation and its habitat requirements expressed by ecological indicator values (EIV), using the geographical information systems (GIS), digital elevation model (DEM), and multivariate statistical analysis. We paid special attention to the river course, which determines the differentiation in slope aspects and the amount of solar radiation reaching the ground surface. The model object was an almost latitudinal, ca. 4-km-long break section of the Sopot river, crossing the escarpment zone of the Central Roztocze Highlands, southeastern Poland. The main material comprised species lists (with estimated abundance) for each ca. 200-m-long section, according to the river valley course, separately for the left and right riverbanks, 40 sections altogether, ca. 15 000 vegetation records, and physical and chemical soil measurements. A 3-meter resolution DEM was derived from a 1:10 000 topographic map. We calculated the correlations between the topographic attributes of the valley, species richness, and the EIVs for all the species recognized in each section of the valley. We found 241 herb plant species in the ground-floor vegetation of the study area. We did not find significant differences between the two riversides (61 ±13 species per one section for the left and 63 ±17 for the right side). Thus, the parallel course of the river valley does not change the species richness on a more “sunny” and more “shiny” riverbank. However, this factor “cooperating” with other topographic attributes of the valley significantly differentiates the shape of species showing various requirements for basic habitat resources: light, moisture, soil trophy, reaction, dispersion, and organic-matter content.

Keywords


species diversity; ground-floor vegetation; riparian landscape; ecological indicator values; solar radiation; wetness index; Digital Elevation Model; multivariate analysis

Full Text:

PDF

References


Kolasa J, Rolle CD. Introduction. The heterogeneity of heterogeneity: a glossary. In: Kolasa J, Pickett STA, editors. Ecological heterogeneity. New York, NY: Springer-Verlag; 1999. p. 1–23.

Gregory SV, Swanson FJ, McKee WA, Cummins KW. An ecosystem perspective of riparian zones: focus on links between land and water. Bioscience. 1991;41(8):540–551.

Lyon J, Sagers CL. Structure of herbaceous plant assemblages in a forested riparian landscape. Plant Ecol. 1998;138:1–16.

Werner KJ, Zedler JB. How sedge meadows, soils, microtopography, and vegetation respond to sedimentation. Wetlands. 2002;22(3):451–466. http://dx.doi/org/10.1672/0277-5212(2002)022[0451:HSMSMA]2.0.CO;2

Francis RA, Tibaldeschi P, McDougall L. Fluvially-deposited large wood and riparian plant diversity. Wetlands Ecol Manage. 2008;16(5):371–382. http://dx.doi/org/10.1007/s11273-007-9074-2

Duru M, Ansquer P, Jouany C, Theau JP, Cruz P. Comparison of methods for assessing the impact of different disturbances and nutrient conditions upon functional characteristics of grassland communities. Ann Bot. 2010;106(5):823–831. http://dx.doi.org/10.1093/aob/mcq178

Jolley RL, Lockaby BG, Cavalcanti GG. Changes in riparian forest composition along a sedimentation rate gradient. Plant Ecol. 2010;210(2):317–330. http://dx.doi/org/10.1007/s11258-010-9759-0

Angiolini C, Nucci A, Frignani F, Landi M. Using multivariate analyses to assess effects of fluvial type on plant species distribution in a Mediterranean river. Wetlands. 2011;31(1):167–177. http://dx.doi/org/10.1007/s13157-010-0118-7

Tabacchi E, Correll DL, Hauer R, Pinay G, Planty-Tabacci AM, Wissmar RC. Development, maintenance and role of riparian vegetation in the river landscape. Freshw Biol. 1998;40(3):497–516. http://dx.doi/org/10.1046/j.1365-2427.1998.00381.x

Decocq G. Patterns of plant species and community diversity at different organization levels in a forested riparian landscape. J Veg Sci. 2002;13(1):91–106. http://dx.doi/org/10.1111/j.1654-1103.2002.tb02026.x

Czarnecka B, Janiec B. Przełomy rzeczne Roztocza jako modelowe obiekty w edukacji ekologicznej. Lublin: Maria Curie-Skłodowska University Press; 2002.

Czarnecka B, Janiec B. Krajobrazy roślinne jako wyraz naturalnych i antropogenicznych przemian środowiska małych dolin rzecznych Roztocza. Problemy Ekologii Krajobrazu. 2006;16:171–184.

Dunn WC, Milne BT, Mantilla R, Gupta VK. Scaling relation between riparian vegetation and stream order in the Whitewater River Network, Kansas, USA. Landsc Ecol. 2011;26(7):983–977. http://dx.doi/org/10.1007/s10980-011-9622-2

Czarnecka B, Chabudziński Ł. Assessment of flora diversity in a minor river valley using ecological indicator values, geographical information systems and digital elevation models. Centr Eur J Biol. 2014;9(2):220–231. http://dx.doi/org/10.2478/s11535-013-0263-0

Muller E. Mapping riparian vegetation along rivers: old concepts and new methods. Special issue: geographic information systems and remote sensing in aquatic botany. Aquatic Bot. 1997;58(3–4): 411–437. http://dx.doi.org/10.1016/S0304-3770(97)00049-1

Tappeiner U, Tasser E, Tappeiner G. Modelling vegetation patterns using natural and anthropogenic influence factors: preliminary experience with a GIS based model applied to an Alpine area. Ecol Modell. 1998;113(1–3):225–237. http://dx.doi.org/10.1016/S0304-3800(98)00145-8

Pfeffer K, Pebesma EJ, Burrough PA. Mapping alpine vegetation using vegetation observations and topographic attributes. Landsc Ecol. 2003;18(8):759–776. http://dx.doi.org/10.1023/B:LAND.0000014471.78787.d0

Fitterer JL, Nelson TA, Coops NC, Wulder MA. Modelling the ecosystem indicators of British Columbia using Earth observation data and terrain indices. Ecol Indic. 2012;20:151–162. http://dx.doi.org/10.1016/j.ecolind.2012.02.024

Ter Braak CJF, Šmilauer P. CANOCO reference manual and CanoDraw for Windows. User’s guide: software for canonical community ordination, Version 4.5. Ithaca, NY: Microcomputer Power; 2002.

Lepš J, Šmilauer P. Multivariate analysis of ecological data using Canoco. Cambridge: Cambridge University Press; 2003.

Seidling W. Ground floor vegetation assessment within the intensive (level II) monitoring of forest ecosystems in Germany: chances and challenges. Eur J For Res. 2005;124(4):301–312. http://dx.doi.org/10.1007/s10342-005-0087-1

Petřik P, Wild J. Environmental correlates of the patterns of plant distribution at the meso-scale: a case study from Northern Bohemia (Czech Republic). Preslia. 2006;78:211–234.

Kopecký M, Čižkova Š. Using topographic wetness index in vegetation ecology: does the algorithm matter? Appl Veg Sci. 2010;13(4):450–459. http://dx.doi.org/10.1111/j.1654-109X.2010.01083.x

Willson JP, Gallant JC, editors. Terrain analysis. Principles and applications, New York, NY: John Wiley and Sons; 2000.

Kraak MJ, Ormeling F. Cartography. Visualisation of geospatial data. Glasgow: Bell and Brain Ltd.; 2003.

Urbański J. GIS w badaniach przyrodniczych [Internet]. 2012 [cited 2015 Mar 16]. Available from: http://ocean.ug.edu.pl/~oceju/CentrumGIS/dane/GIS_w_badaniach_przyrodniczych_12_2.pdf

Ellenberg H. Zeigerwerte der Gefäßpflanzen Mitteleuropas. Scr Geobot. 1974;9:9–160.

Ertsen ACD, Alkemade JRM, Wassen MJ. Calibrating Ellenberg indicator values for moisture, acidity, nutrient availability and salinity in the Netherlands. Plant Ecol. 1998;135:113–124.

Wamelink GWW, Joosten V, van Dobben HF, Berendse F. Validity of Ellenberg indicator values judged from physico-chemical field measurements. J Veg Sci. 2002;13(2):269–278. http://dx.doi.org/10.1111/j.1654-1103.2002.tb02047.x

Lawesson JE, Fosaa AM, Olsen E. Calibration of Ellenberg indicator values for the Faroe Islands. Appl Veg Sci. 2003;6(1):53–62. http://dx.doi.org/10.1111/j.1654-109X.2003.tb00564.x

Crosti R, de Nicola C, Fanelli G, Testi A. Ecological classification of beech woodlands in the Central Apennine through frequency distribution of Ellenberg indicators [Internet]. Ann Bot (Roma). 2010 [cited 2015 Mar 16]. Available from: http://ojs.uniroma1.it/index.php/Annalidibotanica/article/view/9112/9052

Balkovič J, Kollár J, Šimonovič V. Experience with using Ellenberg’s R indicator values in Slovakia: oligotrophic and mesotrophic submontane broad-leaved forests. Biologia. 2012;67(3):474–482. http://dx.doi.org/10.2478/s11756-012-0027-8

Schaffers AP, Sýkora KV. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci. 2000;11(2):225–244. http://dx.doi.org/10.2307/3236802

Czarnecka B, Janiec B. Factors affecting the distribution and properties of forest soils in river breaks of Roztocze. Acta Agrophys. 2001;50:81–93.

Janiec B, Czarnecka B. The “Czartowe Pole” landscape reserve in Roztocze (SE Poland) in the light of interdisciplinary research. Ekologia (Bratislava). 2001;20(4 suppl):222–232.

European Commission 2007. Interpretation manual of European Union habitats. Eur 27. DG Environment.

Dobrzański B, Uziak S, Klimowicz Z, Melke J. Badanie gleb w laboratorium i w polu. Lublin: Maria Curie-Skłodowska University Press; 1992.

Sapek A, Sapek B. Metody analizy chemicznej gleb organicznych. Falenty: IMUZ; 1997.

Hengl T. Finding the right pixel size. Comput Geosci. 2006;32(9):1283–1298. http://dx.doi.org/10.1016/j.cageo.2005.11.008

Bergès L, Gègout JC, Franc A. Can understory vegetation accurately predict site index? A comparative study using floristic and abiotic indices in sessile oak (Quercus petraea Liebl.) stands in northern France. Ann For Sci. 2006;63(1):31–42. http://dx.doi.org/10.1051/forest:2005091

Zarzycki K, Trzcińska-Tacik H, Różański W, Szeląg Z. Wołek J, Korzeniak U. Ecological indicator values of vascular plants of poland. Biodiversity of Poland 2. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences; 2002.

Dorner B, Lertzman K, Fall J. Landscape pattern in topographically complex landscapes: issues and techniques for analysis. Landsc Ecol. 2002:17(8):729–743. http://dx.doi.org/10.1023/A:1022944019665

Kumar L, Skidmore AK, Knowles E. Modelling topographic variation in solar radiation in a GIS environment. Int J Geogr Inf Sci. 1997;11(5):475–497. http://dx.doi.org/10.1080/136588197242266

Moore DM, Lees BG, Davey SM. A new method for predicting vegetation distributions using decision tree analysis in a geographic information system. Environ Manage. 1991;15(1):59–71. http://dx.doi.org/10.1007/BF02393838

Sørensen R, Zinko U, Seibert J. On the calculations of the topographic wetness index evaluation of different methods based on field observation. Hydrol Earth Syst Sci. 2006;10(1):101–112. http://dx.doi.org/10.5194/hess-10-101-2006

Franklin J. Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr. 1995;19(4):474–499. http://dx.doi.org/10.1177/030913339501900403

Feldmeyer-Christe E, Ecker K, Küchler M, Graf U, Waser L. Improving predictive mapping in Swiss mire ecosystems through re-calibration of indicator values. Appl Veg Sci. 2007;10(2):183–192. http://dx.doi.org/10.1111/j.1654-109X.2007.tb00516.x




DOI: https://doi.org/10.5586/asbp.2014.032

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society