Arbuscular mycorrhiza of Deschampsia cespitosa (Poaceae) at different soil depths in highly metal-contaminated site in southern Poland

Ewa Gucwa-Przepióra, Janusz Błaszkowski, Renata Kurtyka, Łukasz Małkowski, Eugeniusz Małkowski

Abstract


This study presents root colonization of Deschampsia cespitosa growing in the immediate vicinity of a former Pb/Zn smelter by arbuscular mycorhizal fungi (AMF) and dark septated endophytes (DSE) at different soil depths. AMF spores and species distribution in soil profile were also assessed. Arbuscular mycorrhiza (AM) and DSE were found in D. cespitosa roots at all investigated soil levels. However, mycorrhizal colonization in topsoil was extremely low with sporadically occurring arbuscules. AM parameters: frequency of mycorrhization of root fragments (F%), intensity of root cortex colonization (M%), intensity of colonization within individual mycorrhizal roots (m%), and arbuscule abundance in the root system (A%) were markedly higher at 20–40, 40–60 cm soil levels and differed in a statistically significant manner from AM parameters from 0–10 and 10–20 cm layers. Mycorrhizal colonization was negatively correlated with bioavailable Cd, Pb and Zn concentrations. The number of AMF spores in topsoil was very low and increased with soil depth (20–40 and 40–60 cm). At the study area spores of three morphologically distinctive AMF species were found: Archaeospora trappei, Funneliformis mosseae and Scutellospora dipurpurescens. The fourth species Glomus tenue colonized roots of D. cespitosa and was observed in the root cortex at 20–40 and 40–60 soil depth, however, its spores were not found at the site.

Keywords


arbuscular mycorrhiza (AM); soil depth; heavy metals; Glomeromycota; DSE; grasses; Glomus tenue

Full Text:

PDF

References


Harrison MJ. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol. 1999;50(1):361–389. http://dx.doi.org/10.1146/annurev.arplant.50.1.361

Smith SE, Read DJ. Mycorrhizal symbiosis. San Diego CA: Academic Press; 2008.

Zubek S, Turnau K, Błaszkowski J. Arbuscular mycorrhiza of endemic and endangered plants from the Tatra Mts. Acta Soc Bot Pol. 2008;77(2):149–156. http://dx.doi.org/10.5586/asbp.2008.019

Bothe H, Regvar M, Turnau K. Arbuscular mycorrhiza, heavy metal, and salt tolerance. In: Sherameti I, Varma A, editors. Soil heavy metals. Berlin: Springer; 2010. p. 87–111. (vol 19). http://dx.doi.org/10.1007/978-3-642-02436-8_5

Mardukhi B, Rejali F, Daei G, Ardakani MR, Malakouti MJ, Miransari M. Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. C R Biol. 2011;334(7):564–571. http://dx.doi.org/10.1016/j.crvi.2011.05.001

Rillig MC. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett. 2004;7(8):740–754. http://dx.doi.org/10.1111/j.1461-0248.2004.00620.x

Hashimoto Y, Matsufuru H, Sato T. Attenuation of lead leachability in shooting range soils using poultry waste amendments in combination with indigenous plant species. Chemosphere. 2008;73(5):643–649. http://dx.doi.org/10.1016/j.chemosphere.2008.07.033

Zheljazkov VD, Craker LE, Xing B, Nielsen NE, Wilcox A. Aromatic plant production on metal contaminated soils. Sci Total Env. 2008;395(2–3):51–62. http://dx.doi.org/10.1016/j.scitotenv.2008.01.041

Yang P, Mao R, Shao H, Gao Y. The spatial variability of heavy metal distribution in the suburban farmland of Taihang Piedmont Plain, China. C R Biol. 2009;332(6):558–566. http://dx.doi.org/10.1016/j.crvi.2009.01.004

Płaza GA, Nałęcz-Jawecki G, Pinyakong O, Illmer P, Margesin R. Ecotoxicological and microbiological characterization of soils from heavy-metal- and hydrocarbon-contaminated sites. Env Monit Assess. 2010;163(1–4):477–488. http://dx.doi.org/10.1007/s10661-009-0851-7

Száková J, Tlustoš P, Pavlíková D, Hanč A, Batysta M. Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions. Chem Pap. 2007;61(4):276–281. http://dx.doi.org/10.2478/s11696-007-0033-4

Epelde L, Becerril JM, Barrutia O, González-Oreja JA, Garbisu C. Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Env Pollut. 2010;158(5):1576–1583. http://dx.doi.org/10.1016/j.envpol.2009.12.013

Kapusta P, Szarek-Łukaszewska G, Stefanowicz AM. Direct and indirect effects of metal contamination on soil biota in a Zn-Pb post-mining and smelting area (S Poland). Env Pollut. 2011;159(6):1516–1522. http://dx.doi.org/10.1016/j.envpol.2011.03.015

Karczewska A, Bogda A, Gałka B, Szulc A, Czwarkiel D, Duszyńska D. Natural and antropogenic soil enrichment in heavy metals in areas of former metallic ore mining in the Sudety Mts. Pol J Soil Sci. 2006;39:131–142.

Siebielec G, Stuczyński T, Korzeniowska-Pucułek R. Metal bioavailability in long-term contaminated Tarnowskie Gory Soils. Pol J Env. Stud. 2006;15:121–129.

Gucwa-Przepióra E, Małkowski E, Sas-Nowosielska A, Kucharski R, Krzyżak J, Kita A, et al. Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Waryński at different soil depths. Env Pollut. 2007;150(3):338–346. http://dx.doi.org/10.1016/j.envpol.2007.01.024

Kucharski R, Sas-Nowosielska A, Małkowski E, Japenga J, Kuperberg JM, Pogrzeba M, et al. The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant Soil. 2005;273(1–2):291–305. http://dx.doi.org/10.1007/s11104-004-8068-6

Gildon A, Tinker PB. Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. New Phytol. 1983;95(2):247–261. http://dx.doi.org/10.1111/j.1469-8137.1983.tb03491.x

del Val C, Barea JM, Azcon-Aguilar C. Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Env Microbiol. 1999;65(2):718–723.

Tullio M, Pierandrei F, Salerno A, Rea E. Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil. Biol Fertil Soils. 2003;37(4):211–214. http://dx.doi.org/10.1007/s00374-003-0580-y

Brej T. Heavy metal tolerance in Agropyron repens (L.) P. Bauv. populations from the Legnica copper smelter area, Lower Silesia. Acta Soc Bot Pol. 1998;67(3–4):325–333. http://dx.doi.org/10.5586/asbp.1998.041

Gucwa-Przepióra E, Turnau K. Arbuscular mycorrhiza and plant succesion on zinc smelter spoil heap in Katowice-Wełnowiec. Acta Soc Bot Pol. 2001;70(2):153–158. http://dx.doi.org/10.5586/asbp.2001.020

Turnau K, Orlowska E, Ryszka P, Zubek S, Anielska T, Gawronski S, et al. Role of micorrhizal fungi in phytoremediation and toxicity monitoring of heavy metal rich industrial wastes in southern Poland. In: Twardowska I, Allen HE, Häggblom MM, Stefaniak S, editors. Soil and water pollution monitoring, protection and remediation. Netherlands: Springer; 2006. p. 533–551. (vol 69). http://dx.doi.org/10.1007/978-1-4020-4728-2_35

von Frenckell-Insam BAK, Hutchinson TC. Occurrence of heavy metal tolerance and co-tolerance in Deschampsia cespitosa (L.) Beauv. from european and canadian populations. New Phytol. 1993;125(3):555–564. http://dx.doi.org/10.1111/j.1469-8137.1993.tb03903.x

Gaur A, Adholeya A. Prospects of arbuscural mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci. 2004;86:528–534.

Regvar M, Vogel-Mikuš K, Kugonič N, Turk B, Batič F. Vegetational and mycorrhizal successions at a metal polluted site: Indications for the direction of phytostabilisation? Env Pollut. 2006;144(3):976–984. http://dx.doi.org/10.1016/j.envpol.2006.01.036

Turnau K, Jurkiewicz A, Lingua G, Barea JM, Gianinazzi–Pearson V. Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal-polluted sites. In: Prasad MNV, Sajwan KS, Naidu R, editors. Trace elements in the environment. London: CRC Press; 2005. p. 235–252. http://dx.doi.org/10.1201/9781420032048.ch13

Turnau K, Anielska T, Ryszka P, Gawroński S, Ostachowicz B, Jurkiewicz A. Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes–new solution for waste revegetation. Plant Soil. 2008;305(1–2):267–280. http://dx.doi.org/10.1007/s11104-008-9563-y

Turnau K, Ryszka P, Wojtczak G. Metal tolerant mycorrhizal plants: a review from the perspective on industrial waste in temperate region. In: Koltai H, Kapulnik Y, editors. Arbuscular mycorrhizas: physiology and function. Netherlands: Springer; 2010. p. 257–276. http://dx.doi.org/10.1007/978-90-481-9489-6_12

Guadarrama P, Álvarez-Sánchez FJ. Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Veracruz, Mexico. Mycorrhiza. 1999;8(5):267–270. http://dx.doi.org/10.1007/s005720050244

Joner E, Leyval C. Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biol Fertil Soils. 2001;33(5):351–357. http://dx.doi.org/10.1007/s003740000331

Orłowska E, Zubek S, Jurkiewicz A, Szarek-Łukaszewska G, Turnau K. Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza. 2002;12(3):153–159. http://dx.doi.org/10.1007/s00572-001-0155-4

Mejstrik VK. Vesicular-arbuscular mycorrhizas of the species of a Molinietum coeruleae L. I. association: the ecology. New Phytol. 1972;71(5):883–890. http://dx.doi.org/10.1111/j.1469-8137.1972.tb01968.x

Rillig MC, Field CB. Arbuscular mycorrhizae respond to plants exposed to elevated atmospheric CO2 as a function of soil depth. Plant Soil. 2003;254(2):383–391. http://dx.doi.org/10.1023/A:1025539100767

Asghari HR, Chittleborough DJ, Smith FA, Smith SE. Influence of arbuscular mycorrhizal (AM) symbiosis on phosphorus leaching through soil cores. Plant Soil. 2005;275(1–2):181–193. http://dx.doi.org/10.1007/s11104-005-1328-2

Kabir Z, O’Halloran IP, Widden P, Hamel C. Vertical distribution of arbuscular mycorrhizal fungi under corn (Zea mays L.) in no-till and conventional tillage systems. Mycorrhiza. 1998;8(1):53–55. http://dx.doi.org/10.1007/s005720050211

Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A. Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol. 2005;165(1):273–283. http://dx.doi.org/10.1111/j.1469-8137.2004.01235.x

Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 1970;55(1):158–160. http://dx.doi.org/10.1016/S0007-1536(70)80110-3

Trouvelot A, Kough JL, Gianinazzi-Pearson V. Mesure du taux de mycorhization VA d’un systéme radiculaire. Recherche de méthodes d’estimationayant une signification fonctionelle. In: Gianinazzi-Pearson V, Gianinazzi S, editors. Physiological and genetical aspects of mycorrhizae. Paris: INRA; 1986. p. 217–221.

Gerdemann JW, Nicolson TH. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc. 1963;46(2):235–244. http://dx.doi.org/10.1016/S0007-1536(63)80079-0

Omar MB, Bollan L, Heather W. A permanent mounting medium for fungi. Bull Br Mycol Soc. 1979;13:31–32.

Błaszkowski J. Glomeromycota. Cracow: W. Szafer Institute of Botany, Polish Academy of Sciences; 2012.

Lityński T, Jurkowska H, Gorlach E. Analiza chemiczno-rolnicza. Warsaw: Polish Scientific Publishers PWN; 1976.

Houba VJG, Van der Lee JJ, Novozamsky I. Soil analysis procedures, other procedures (soil and plant analysis, part 5b). Wageningen: Wageningen Agricultural University; 1995.

Schüßler A, Walker C. The Glomeromycota: a species list with new families and genera [Internet]. 2013 [cited 2013 Apr 10]; Available from: http://www.amf-phylogeny.com

Pattinson GS, Sutton BG, McGee PA. Leachate from a waste disposal centre reduces the initiation of arbuscular mycorrhiza, and spread of hyphae in soil. Plant Soil. 2000;227(1–2):35–45. http://dx.doi.org/10.1023/A:1026519527211

Giovannetti M, Avio L, Sbrana C. Fungal spore germination and pre-symbiotic mycelial growth – physiological and genetic aspects. In: Koltai H, Kapulnik Y, editors. Arbuscular mycorrhizas: physiology and function. Berlin: Springer; 2010. p. 3–32. http://dx.doi.org/10.1007/978-90-481-9489-6_1

Tonin C, Vandenkoornhuyse P, Joner EJ, Straczek J, Leyval C. Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza. 2001;10(4):161–168. http://dx.doi.org/10.1007/s005720000072

Nadgórska-Socha A, Kafel A, Kandziora-Ciupa M, Gospodarek J, Zawisza-Raszka A. Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Env Sci Pollut Res. 2013;20(2):1124–1134. http://dx.doi.org/10.1007/s11356-012-1191-7

Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. Lead uptake, toxicity, and detoxification in plants. Rev Env Contam Toxicol. 2011;213:113–136. http://dx.doi.org/10.1007/978-1-4419-9860-6_4

Trigueros D, Mingorance MD, Rossini Oliva S. Evaluation of the ability of Nerium oleander L. to remediate Pb-contaminated soils. J Geochem Explor. 2012;114:126–133. http://dx.doi.org/10.1016/j.gexplo.2012.01.005

Colpaert JV, Muller LAH, Lambaerts M, Adriaensen K, Vangronsveld J. Evolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytol. 2004;162(2):549–559. http://dx.doi.org/10.1111/j.1469-8137.2004.01037.x

Pawlowska TE, Charvat I. Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Env Microbiol. 2004;70(11):6643–6649. http://dx.doi.org/10.1128/AEM.70.11.6643-6649.2004

Orłowska E, Ryszka P, Jurkiewicz A, Turnau K. Effectiveness of arbuscular mycorrhizal fungal (AMF) strains in colonisation of plants involved in phytostabilisation of zinc wastes. Geoderma. 2005;129(1–2):92–98. http://dx.doi.org/10.1016/j.geoderma.2004.12.036

Zarei M, König S, Hempel S, Nekouei MK, Savaghebi G, Buscot F. Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Env Pollut. 2008;156(3):1277–1283. http://dx.doi.org/10.1016/j.envpol.2008.03.006

Joner EJ, Leyval C. Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol. 1997;135(2):353–360. http://dx.doi.org/10.1046/j.1469-8137.1997.00633.x

Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-Pearson V, Gianinazzi S. Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol. 2003;157(3):555–567. http://dx.doi.org/10.1046/j.1469-8137.2003.00682.x

Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz KJ, Gianinazzi S, et al. Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza. 2005;16(1):51–60. http://dx.doi.org/10.1007/s00572-005-0016-7

Chen B, Shen H, Li X, Feng G, Christie P. Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil. 2004;261(1–2):219–229. http://dx.doi.org/10.1023/B:PLSO.0000035538.09222.ff

Mandyam K, Jumpponen A. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol. 2005;53(1):173–189. http://dx.doi.org/10.3114/sim.53.1.173

Jumpponen A. Dark septate endophytes – are they mycorrhizal? Mycorrhiza. 2001;11(4):207–211. http://dx.doi.org/10.1007/s005720100112

Usuki F, Narisawa K. A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia. 2007;99(2):175–184. http://dx.doi.org/10.3852/mycologia.99.2.175

Zarei M, Saleh-Rastin N, Jouzani GS, Savaghebi G, Buscot F. Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. Eur J Soil Biol. 2008;44(4):381–391. http://dx.doi.org/10.1016/j.ejsobi.2008.06.004

Zarei M, Hempel S, Wubet T, Schäfer T, Savaghebi G, Jouzani GS, et al. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Env Pollut. 2010;158(8):2757–2765. http://dx.doi.org/10.1016/j.envpol.2010.04.017

Pawlowska TE, Błaszkowski J, Rühling Å. The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza. 1997;6(6):499–505. http://dx.doi.org/10.1007/s005720050154

Wu FY, Bi YL, Leung HM, Ye ZH, Lin XG, Wong MH. Accumulation of As, Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal-contaminated soils. Appl Soil Ecol. 2010;44(3):213–218. http://dx.doi.org/10.1016/j.apsoil.2009.12.008

Ortega-Larrocea MP, Xoconostle-Cázares B, Maldonado-Mendoza IE, Carrillo-González R, Hernández-Hernández J, Garduño MD, et al. Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico. Env Pollut. 2010;158(5):1922–1931. http://dx.doi.org/10.1016/j.envpol.2009.10.034

Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D. Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza. 2001;10(4):169–174. http://dx.doi.org/10.1007/s005720000073

Whitfield L, Richards AJ, Rimmer DL. Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in northern England. Mycorrhiza. 2004;14(1):55–62. http://dx.doi.org/10.1007/s00572-003-0268-z

Orłowska E, Przybyłowicz W, Orlowski D, Turnau K, Mesjasz-Przybyłowicz J. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Env Pollut. 2011;159(12):3730–3738. http://dx.doi.org/10.1016/j.envpol.2011.07.008

Ietswaart JH, Griffioen WAJ, Ernst WHO. Seasonality of VAM infection in three populations of Agrostis capillaris (Gramineae) on soil with or without heavy metal enrichment. Plant Soil. 1992;139(1):67–73. http://dx.doi.org/10.1007/BF00012843

Griffioen WAJ. Characterization of a heavy metal-tolerant endomycorrhizal fungus from the surroundings of a zinc refinery. Mycorrhiza. 1994;4(5):197–200. http://dx.doi.org/10.1007/BF00206780

Griffioen WAJ, Ietswaart JH, Ernst WHO. Mycorrhizal infection of an Agrostis capillaris population on a copper contaminated soil. Plant Soil. 1994;158(1):83–89. http://dx.doi.org/10.1007/BF00007920

Błaszkowski J. Polish Glomales. Mycorrhiza. 1994;4(4):173–182. http://dx.doi.org/10.1007/s005720050017

Rabatin SC. Seasonal and edaphic variation in vesicular-arbuscular mycorrhizal infection of grasses by Glomus tenuis. New Phytol. 1979;83(1):95–102. http://dx.doi.org/10.1111/j.1469-8137.1979.tb00730.x

Błaszkowski J. Comparative studies of the occurrence of arbuscular fungi and mycorrhizae (Glomales) in cultivated and uncultivated soils of Poland. Acta Mycol. 1993;28:93–140.

Turnau K, Mesjasz-Przybylowicz J. Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza. 2003;13(4):185–190. http://dx.doi.org/10.1007/s00572-002-0213-6




DOI: https://doi.org/10.5586/asbp.2013.033

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society