Can Macrofungal Biodiversity Predict Forest Status and Dynamics? A View From South European Mediterranean Forests (Italy)

Elia Ambrosio, Alan Feest

Abstract


Fungi are among the most important organisms on earth, and they are essential components of terrestrial ecosystems. Their reproductive structures are strictly dependent and affected by environmental conditions, and community dynamics over time and space may be indirect indicators of the health status of forests. We combined macrofungal biodiversity indices in eight Mediterranean forests in Italy and surveyed 160 plots by standardized surveys, to evaluate the role of macrofungi as early predictors of change in the forest structure. The results show that indices of fungal diversity are influenced by geographic and floristic conditions, and inter- and intra-annual temperature and rainfall fluctuations affect the formation of fungal fruiting bodies. These findings suggest that environmental changes could be reflected by macrofungi, and conservation initiatives should consider the pivotal role that fungi play in biodiversity monitoring.

Keywords


environmental impact; macrofungi; biodiversity indices; standardized surveys; Mediterranean forests

Full Text:

PDF XML (JATS)

References


Ambrosio, E., Lancellotti, E., Brotzu, R., Salch, H., Franceschini, A., & Zotti, M. (2015). Assessment of macrofungal diversity in a silver fir plantation in Sardinia (Italy) using a standardized sampling procedure. Italian Journal of Mycology, 44, 1–17. https://doi.org/10.6092/issn.2465-311X/5587

Ambrosio, E., Mariotti, M. G., Zotti, M., Cecchi, G., Di Piazza, S., & Feest, A. (2018). Measuring macrofungal biodiversity quality using two different survey approaches: A case study in broadleaf Mediterranean forests. Ecological Indicators, 85, 1210–1230. https://doi.org/10.1016/j.ecolind.2017.11.054

Ambrosio, E., & Zotti, M. (2015). Mycobiota of three Boletus edulis (and allied species) productive sites. Sydowia, 67, 197–216. https://doi.org/10.12905/0380.sydowia67-2015-0197

Baar, J., & Kuyper, T. W. (1998). Restoration of above ground ectomycorrhizal flora in Pinus sylvestris (Scots pine) in the Netherlands by the removal of litter and humus. Restoration Ecology, 6, 227–237. https://doi.org/10.1046/j.1526-100X.1998.00635.x

Blackwell, M. (2011). The fungi: 1, 2, 3, ... 5.1 million species? American Journal of Botany, 98, 426–438. https://doi.org/10.3732/ajb.1000298

Blasi, C., Boitani, L., La Posta, S., Manes, F., & Marchetti, M. (2007). Biodiversity in Italy. Contribution to the National Biodiversity Strategy. Palombi & Partner Editore s.r.l.

Boccardo, F., Traverso, M., Vizzini, A., & Zotti, M. (2008). Guida ai funghi d’Italia [Guide to the mushrooms of Italy]. Zanichelli Editore.

Boddy, L., Bünteng, U., Egli, S., Gange, A. C., Heegaard, E., Kirk, P. M., Mohammad, A., & Kauserud, H. (2014). Climate variation effects on fungal fruiting. Fungal Ecology, 10, 20–33. https://doi.org/10.1016/j.funeco.2013.10.006

Büntgen, U., Kauserud, H., & Egli, S. (2011). Linking climate variability to mushroom productivity and phenology. Frontiers in Ecology and the Environment, 10(1), 14–19. https://doi.org/10.1890/110064

Büntgen, U., Peter, M., Kauserud, H., & Egli, S. (2013). Unraveling environmental drivers of a recent increase in Swiss fungi fruiting. Global Change Biology, 19(9), 2785–2794. https://doi.org/10.1111/gcb.12263

Chao, A. (1984). Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11, 265–270.

Chiarucci, A. (2012). Estimating species richness: Still a long way off! Journal of Vegetation Science, 23(6), 1003–1005. https://doi.org/10.1111/jvs.12003

Chiarucci, A., & Piovesan, G. (2019). Need for a global map of forest naturalness for a sustainable future. Conservation Biology, 34(2), 368–372. https://doi.org/10.1111/cobi.13408

Colwell, R. K., Chao, A., Gotelli, N. J., Lin, S.-Y., Mao, C. X., Chazdon, R. L., & Longino, J. T. (2012). Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. Journal of Plant Ecology, 5, 3–21. https://doi.org/10.1093/jpe/rtr044

Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M. C. (2018). Classifying drivers of global forest loss. Science, 361, 1108–1111. https://doi.org/10.1126/science.aau3445

De Cáceres, M., Legendre, P., & Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. OIKOS, 119(10), 1674–1684. https://doi.org/10.1111/j.1600-0706.2010.18334.x

Egli, S. (2011). Mycorrhizal mushroom diversity and productivity – An indicator of forest health? Annals of Forest Science, 68, 81–88. https://doi.org/10.1007/s13595-010-0009-3

Everitt, B., & Hothorn, T. (2006). A handbook of statistical analyses using R. CRC Press. https://doi.org/10.1201/9781420010657

Feest, A. (2006). Establishing baseline indices for the quality of the biodiversity of restored habitats using a standardized sampling process. Restoration Ecology, 14(1), 112–122. https://doi.org/10.1111/j.1526-100X.2006.00112.x

Feest, A. (2013). The utility of the Streamlining European Biodiversity Indicators 2010 (SEBI 2010). Ecological Indicators, 28, 16–21. https://doi.org/10.1016/j.ecolind.2012.10.015

Feest, A., Aldred, T. D., & Jedamzik, K. (2010). Biodiversity quality: A paradigm for biodiversity. Ecological Indicators, 10, 1077–1082. https://doi.org/10.1016/j.ecolind.2010.04.002

Feest, A., van Swaay, C., & van Hinsberg, A. (2014). Nitrogen deposition and the reduction of butterfly biodiversity quality in the Netherlands. Ecological Indicators, 39, 115–119. https://doi.org/10.1016/j.ecolind.2013.12.008

Gaston, K. J., & Spicer, J. I. (2004). Biodiversity: An introduction. Blackwell.

Gotelli, N., & Colwell, R. K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecological Letters, 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x

Halme, P., & Kotiaho, J. S. (2012). The importance of timing and number of surveys in fungal biodiversity research. Biodiversity Conservation, 21, 205–219. https://doi.org/10.1007/s10531-011-0176-z

Hawksworth, D. L. (2001). The magnitude of fungal diversity: The 1.5 million species estimate revised. Mycological Research, 105, 1422–1432. https://doi.org/10.1017/S0953756201004725

He, M.-Q., Zhao, R.-L., Hyde, K. D., Begerow, D., Kemler, M., Yurkov, A., McKenzie, E. H. C., Raspé, O., Kakishima, M., Sánchez-Ramírez, S., Vellinga, E. C., Halling, R., Papp, V., Zmitrovich, I. V., Buyck, B., Ertz, D., Wijayawardene, N. N., Cui, B.-K., Schoutteten, N., ... Kirk, P. M. (2019). Notes, outline and divergence times of Basidiomycota. Fungal Diversity, 99, 105–367. https://doi.org/10.1007/s13225-019-00435-4

Heilmann-Clausen, J., Barron, E. S., Boddy, L., Dahlberg, A., Griffith, G. W., Nordén, J., Ovaskainen, O., Perini, C., Senn-Irlet, B., & Halme, P. (2014). A fungal perspective on conservation biology. Conservation Biology, 29(1), 61–68. https://doi.org/10.1111/cobi.12388

Heilmann-Clausen, J., & Vesterholt, J. (2008). Conservation: Selection criteria and approaches. In L. Boddy, J. C. Frankland, & P. van West (Eds.), Ecology of saprotrophic basidiomycetes (pp. 325–347). Elsevier. https://doi.org/10.1016/S0275-0287(08)80019-7

Heltshe, J. F., & Forrester, N. E. (1983). Estimating species richness using the jackknife procedure. Biometrics, 39, 1–11. https://doi.org/10.2307/2530802

Hibbett, D. D., Bauer, R., Binder, M., Giachini, A. J., Hosaka, K., Justo, A., Larsson, E., Larsson, K. H., Lawrey, J. D., Miettinen, O., Nagy, L., Nilsson, R. H., Weiss, M., & Thorn, R. G. (2014). Agaricomycetes. In D. J. McLaughlin, & J. W. Spatafora (Eds.), The Mycota. Vol. VII, Part A. Systematics and evolution (2nd ed., pp. 373–429). Springer-Verlag. https://doi.org/10.1007/978-3-642-55318-9_14

Kauserud, H., Heegaard, E., Semenov, M. A., Boddy, L., Halvorsen, R., Stige, L. C., Sparks, T. H., Gange, A. C., & Stenseth, N. C. (2010). Climate change and spring-fruiting fungi. Prooceeding of the Royal Society B, 277, 1169–1177. https://doi.org/10.1098/rspb.2009.1537

Kauserud, H., Stige, L. C., Vik, J. O., Økland, R. H., Høiland, K., & Stenseth, N. C. (2008). Mushroom fruiting and climatic change. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3811–3814. https://doi.org/10.1073/pnas.0709037105

Kirk, P. M., Cannon, P. F., Minter, D. W., & Stalpers, J. A. (2008). Dictionary of the fungi (10th ed.). CAB International.

Kotiranta, H., & Niemelä, T. (1993). Uhanalaiset käävät Suomessa. Toinen, uudistettu painos [Threatened polypores in Finland]. Suomen Ympäristökeskus.

Legendre, P., & Legendre, L. (2012). Numerical ecology (3rd ed.). Elsevier.

Magurran, A. E. (2004). Measuring biological diversity. Blackwell.

Mariotti, M. G. (2008). Atlante degli habitat. Natura 2000 in Liguria [Atlas of habitats. Natura 2000 in Liguria]. Regione Liguria.

Mohan, J. E., Cowden, C. C., Baas, P., Dawadi, A., Frankson, P. T., Helmick, K., Hughes, E., Khan, S., Lang, A., Machmuller, M., Taylor, M., & Witt, C. A. (2014). Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: Mini-review. Fungal Ecology, 10, 3–19. https://doi.org/10.1016/j.funeco.2014.01.005

Mueller, G. G., & Schmit, J. P. (2007). Fungal biodiversity: What do we know? What can we predict? Biodiversity and Conservation, 16, 1–5. https://doi.org/10.1007/s10531-006-9117-7

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2013). VEGAN: Community Ecology Package. R package version 2.5-7. https://cran.r-project.org/package=vegan

Onofri, S., Bernicchia, A., Filipello, V., Padovan, F., Perini, C., Ripa, C., Salerni, E., Savino, E., Venturella, G., Vizzini, A., & Zotti, M. (2005). Checklist of Italian fungi. Carlo Delfino Editore.

Smith, E. P., & van Belle, G. (1984). Nonparametric estimation of species richness. Biometrics, 40, 119–129. https://doi.org/10.2307/2530750

Stursova, M., Snajdr, J., Cajthaml, T., Barta, J., Santruckova, H., & Baldrian, P. (2014). When the forest dies: The response of forest soil fungi to a bark beetle-induced tree dieback. ISME Journal, 8, 1920–1931. https://doi.org/10.1038/ismej.2014.37

Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Ruiz, L. V., Vasco-Palacios, A. M., Thu, P. Q., Suija, A., Smith, M. E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., ... Abarenkov, K. (2014). Global diversity and geography of soil fungi. Science, 342, Article 1256688. https://doi.org/10.1126/science.1256688

Tedersoo, L., Bahram, M., & Zobel, M. (2020). How mycorrhizal associations drive plant population and community biology. Science, 367, Article eaba1223. https://doi.org/10.1126/science.aba1223

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427, 145–148. https://doi.org/10.1038/nature02121

Tomao, A., Bonet, A. A., Castaño, C., & de-Miguel, S. (2020). How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. Forest Ecology and Management, 457, Article 117678. https://doi.org/10.1016/j.foreco.2019.117678

Tóth, B. B., & Feest, A. (2007). A simple method to assess macrofungal sporocarp biomass for investigating ecological change. Canadian Journal of Botany, 85, 652–658. https://doi.org/10.1139/B07-068

United Nations. (2017). Global indicator framework for the sustainable development goals and targets of the 2030 Agenda for Sustainable Development; work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development (A/RES/71/313). https://unstats.un.org/sdgs/indicators/indicators-list/

Xu, H., Liu, S., Li, Y., Zang, R., & He, F. (2012). Assessing non-parametric and area-based methods for estimating regional species richness. Journal of Vegetation Science, 23, 1006–1012. https://doi.org/10.1111/j.1654-1103.2012.01423.x




DOI: https://doi.org/10.5586/am.567

Journal ISSN:
  • 2353-074X (online)
  • 0001-625X (print; ceased since 2015)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society