Epicoccum nigrum Link as a Potential Biocontrol Agent Against Selected Dermatophytes

Agata Piecuch, Rafał Ogórek, Mariusz Dyląg, Magdalena Cal, Katarzyna Przywara


Epicoccum nigrum Link is well known for producing biologically-active substances with activities against prokaryotic and eukaryotic cells. The major goal of this study was to assess E. nigrum as a potential in vitro agent against selected species of dermatophytes. The effects of the types of media used in this study on the interactions between the microscopic fungi were also examined. Epicoccum nigrum’s bioactive metabolites exhibited a strong growth inhibitory effect against the dermatophytes, suggesting its potential as a biocontrol agent. Notably, the strength of these interactions was dependent on the type of the medium. These secondary metabolites are not toxic against the higher eukaryotic organisms, which was further demonstrated by using the Galleria mellonella model.


secondary metabolites; fungi; endophyte; toxicity

Full Text:



Achterman, R. R., Smith, A. R., Oliver, B. G., & White, T. C. (2011). Sequenced dermatophyte strains: Growth rate, conidiation, drug susceptibilities, and virulence in an invertebrate model. Fungal Genetics and Biology, 48(3), 335–341. https://doi.org/10.1016/j.fgb.2010.11.010

Baute, M. A., Deffieux, G., Baute, R., & Neveu, A. (1978). New antibiotics from the fungus Epicoccum nigrum. I. Fermentation, isolation and antibacterial properties. The Journal of Antibiotics (Tokyo), 31(11), 1099–1101. https://doi.org/10.7164/antibiotics.31.1099

Colavolpe, B., Ezquiaga, J., Maiale, S., & Ruiz, O. (2018). First report of Epicoccum nigrum causing disease in Lotus corniculatus in Argentina. New Disease Reports, 38, 6. https://doi.org/10.5197/j.2044-0588.2018.038.006

de Cal, A., Larena, I., Liñán, M., Torres, R., Lamarca, N., Usall, J., Domenichini, P., Bellini, A., Eribe, X. O., & Melgarejo, P. (2009). Population dynamics of Epicoccum nigrum, a biocontrol agent against brown rot in stone fruit. Journal of Applied Microbiology, 106(2), 592–605. https://doi.org/10.1111/j.1365-2672.2008.04030.x

Fatima, N., Ismail, T., Muhammad, S. A., Jadoon, M., Ahmed, S., Azhar, S., & Mumtaz, A. (2016). Epicoccum sp., an emerging source of unique bioactive metabolites. Acta Poloniae Pharmaceutica, 73(1), 13–21.

Fávaro, L. C., Sebastianes, F. L., & Araújo, W. L. (2012). Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS One, 7, Article e36826. https://doi.org/10.1371/journal.pone.0036826

Fuchs, B. B., O’Brien, E., Khoury, J. B. E., & Mylonakis, E. (2010). Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence, 1(6), 475–482. https://doi.org/10.4161/viru.1.6.12985

Jorjão, A. L., Oliveira, L. D., Scorzoni, L., Figueiredo-Godoi, L. M. A., Prata, M. C. A., Jorge, A. O. C., & Junqueira, J. C. (2018). From moths to caterpillars: Ideal conditions for Galleria mellonella rearing for in vivo microbiological studies. Virulence, 9(1), 383–389. https://doi.org/10.1080/21505594.2017.1397871

Kavanagh, K., & Sheehan, G. (2018). The use of Galleria mellonella larvae to identify novel antimicrobial agents against fungal species of medical interest. Journal of Fungi, 4(3), Article 113. https://doi.org/10.3390/jof4030113

Mallea, M., Pesando, D., Bernard, P., & Khoulalene, B. (1991). Comparison between antifungal and antibacterial activities of several strains of Epicoccum purpurascens from the Mediterranean area. Mycopathologia, 115(2), 83–88. https://doi.org/10.1007/BF00436796

Mańka, K. (1974). Zbiorowiska grzybów jako kryterium oceny wpływu środowiska glebowego na choroby roślin [Fungal communities as a criterion for estimating the effect of the environment on plant diseases]. Zeszyty Problemowe Postępu Nauk Rolniczych, 160, 9–23.

Mańka, K., & Mańka, M. (1992). A new method for evaluating interaction between soil inhabiting fungi and plant pathogens. IOBC/WPRS Bulletin, 15(1), 73–75.

Ogórek, R., & Pląskowska, E. (2011). Epicoccum nigrum for biocontrol agents in vitro of plant fungal pathogens. Communications in Agricultural and Applied Biological Sciences, 76(4), 691–697.

Ogórek, R., Višňovská, Z., & Tancinová, D. (2016). Mycobiota of underground habitats: Case study of Harmanecká cave in Slovakia. Microbial Ecology, 71(1), 87–99. https://doi.org/10.1007/s00248-015-0686-4

Palacio-Barrera, A. M., Areiza, D., Zapata, P., Atehortua, L., Correa, C., & Penuela- Vasquez, M. (2019). Induction of pigment production through media composition, abiotic and biotic factors in two filamentous fungi. Biotechnology Reports, 21, Article e00308. https://doi.org/10.1016/j.btre.2019.e00308

Perveen, I., Raza, M. A., Iqbal, T., Naz, I., Sehar, S., & Ahmed, S. (2017). Isolation of anticancer and antimicrobial metabolites from Epicoccum nigrum; endophyte of Ferula sumbul. Microbial Pathogenesis, 110, 214–224. https://doi.org/10.1016/j.micpath.2017.06.033

Pradeep, S. F., Begam, S. M., Palaniswamy, M., & Pradeep, B. V. (2013). Influence of culture media on growth and pigment production by Fusarium moniliforme KUMBF1201 isolated from paddy field soil. World Applied Sciences Journal, 22(1), 70–77.

Qian, Y., Yu, H., He, D., Yang, H., Wang, W., Wan, X., & L, W. (2013). Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess and Biosystems Engineering, 36(11), 1613–1619. https://doi.org/10.1007/s00449-013-0937-z

Somjaipeng, S., Medina, A., & Magan, N. (2016). Environmental stress and elicitors enhance taxol production by endophytic strains of Paraconiothyrium variabile and Epicoccum nigrum. Enzyme and Microbial Technology, 90, 69–75.

Sun, H. H., Mao, W. J., Jiao, J. Y., Xu, J. C., Li, H. Y., Chen, Y., Qi, X. H., Chen, Y. L., Xu, J., Zhao, C. Q., Hou, Y. J., & Yang, Y. P. (2011). Structural characterization of extracellular polysaccharides produced by the marine fungus Epicoccum nigrum JJY-40 and their antioxidant activities. Marine Biotechnology (NY), 13(5), 1048–1055.

Weitzman, I., & Summerbell, R. C. (1995). The dermatophytes. Clinical Microbiology Reviews, 8(2), 240–259. https://doi.org/10.1128/CMR.8.2.240