Microfungal diversity of Juncus trifidus L. and Salix herbacea L. at isolated locations in the Sudetes and Carpathian Mountains

Brayan Jacewski, Jacek Urbaniak, Paweł Kwiatkowski, Wojciech Pusz


During cold periods in the Pleistocene Epoch, many plants known as the “relict species” migrated and inhabited new areas. Together with plants, some microfungi also migrated, remaining present on plants and in plant communities. However, the relationship between fungi and the migrating plants (especially host plants) is not well understood. Therefore, we examined the diversity and distribution of microfungi associated with two migratory relict plants in the Sudetes and Carpathian Mountains: Salix herbacea L. and Juncus trifidus L. In total, we found 17 taxa of fungi that were collected from nine different locations. Nine fungal taxa were collected on S. herbacea, and eight taxa on J. trifidus. Localities richest of fungi on S. herbacea were Mały Śnieżny Kocioł (Karkonosze Mts, Sudetes) and on J. trifidus, the Tatra Mts (Carpathian Mts). This work provides new insights into the distribution of fungi inhabiting S. herbacea and J. trifidus in Poland.


biodiversity; relict-associated microfungi; mountains; Juncus; Salix; Central Europe

Full Text:



Chlebicki A. Biogeographic relationships between fungi and selected glacial relict plants. Łódź: Polish Botanical Society; 2002. (Monographiae Botanicae; vol 90). https://doi.org/10.5586/mb.2002.001

Hewitt GM. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc Lond. 1996;58:247–276. https://doi.org/10.1006/bijl.1996.0035

Hewitt GM. Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B. 2004;359:183–195. https://doi.org/10.1098/rstb.2003.1388

Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF. Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol. 2002;7:453–464. https://doi.org/10.1046/j.1365-294x.1998.00289.x

Ronikier M, Cieślak E, Korbecka G. High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Mol Ecol. 2008;17:1763–1775. https://doi.org/10.1111/j.1365-294X.2008.03664.x

Slovák M, Kučera J, Turis P, Zozomová-Lihová J. Multiple glacial refugia and postglacial colonization routes inferred for a woodland geophyte, Cyclamen purpurascens: patterns concordant with the Pleistocene history of broadleaved and coniferous tree species. Biol J Linn Soc Lond. 2012;105:741–760. https://doi.org/10.1111/j.1095-8312.2011.01826.x

Urbaniak J, Kwiatkowski P, Ronikier M. Postglacial history and current population genetic diversity of a central-European forest plant Hacquetia epipactis. Preslia. 2018;90:39–57. https://doi.org/10.23855/preslia.2018.039

Pusz W, Urbaniak J. Foliar diseases of willows (Salix spp.) in selected locations of the Karkonosze Mts (the Giant Mts). Eur J Plant Pathol. 2017;148:45–51. https://doi.org/10.1007/s10658-016-1067-7

Long O, Longa C, Luisa P, Tosi S. Conidial fungi from Salix herbacea leaf litter and their growth temperature preferences. Boletín Micológico. 2018;20:91–95.

Barr MEB. Northern Pyrenomycetes. I, Canadian Eastern Arctic. Montreal: Institut botanique de l’Université de Montréal; 1959.

Denchev CM. Bulgarian Uredinales. Mycotaxon. 1995;55:405–465.

Mycobank. Specimen record #94273 n.d. [Internet]. 2019 [cited 2018 Jun 14]. Available from: http://www.mycobank.org/BioloMICS.aspx?Table=Mycobank%20specimens&Rec=94273&Fields=All

Mycobank. Specimen record #65307 n.d. [Internet]. 2019 [cited 2018 Jun 14]. Available from: http://www.mycobank.org/BioloMICS.aspx?Table=Mycobank%20specimens&Rec=65307&Fields=All

Monod M. Monographie taxonomique des Gnomoniaceae. Horn: Berger; 1983.

Pusz W. Plants’ healthiness assessment as part of the environmental monitoring of protected mountainous area in the example of Karkonosze (Giant) Mts. (SW Poland). Environ Monit Assess. 2016;188:544. https://doi.org/10.1007/s10661-016-5551-5

Farr DF, Bills GF, Chamuris GP, Rossman AY. Fungi on plants and plant products in the United States. St. Paul, MN; 1989. (Contributions from the U.S. National Fungus Collections; vol 5).

Šandová M, Chlebicki A. Fungi on Juncus trifidus in the Czech Republic (II) with taxonomical notes to some species. Czech Mycol. 2004;56:203–221.

Šandová M. Fungi on Juncus trifidus in the Czech Republic. I. Czech Mycol. 2004;56:63–84.

Chlebicki A. Some endophytes of Juncus trifidus from Tatra Mts. in Poland. Acta Mycol. 2009;44:11–17. https://doi.org/10.5586/am.2009.003

Scheuer C. Some important corrections to the ascomycetes recorded on Cyperaceae and Juncaceae from the Eastern Alps by Scheuer (1988). Mycotaxon. 1999;73:33–44.

Scheuer C. Ascomyceten auf Cyperaceen und Juncaceen im Ostalpenraum. Bibl Mycol. 1988;123:1–274.

Hulten E. Phytogeographical connections of the North Atlantic. In: Löve Á, Löve D, editors. North Atlantic biota and their history: a symposium held at the University of Iceland, Reykjavík under the auspices of the University of Iceland and the Museum of Natural History; 1962 Jul; Reykjavík, Iceland. Oxford: Pergamon Press; 1963. p. 45–72. https://doi.org/10.5962/bhl.title.10237

Meusel H, Jäger E, Weinert E, editors. Vergleichende Chorologie der zentraleuropäischen Flora. Jena: G. Fischer; 1965.

Bensch K, Braun U, Groenewald JZ, Crous PW. The genus Cladosporium. Stud Mycol. 2012;72:1–401. https://doi.org/10.3114/sim0003

Henderson DM. The rust fungi of the British Isles: a guide to identification. Kew: British Mycological Society; 2004.

Brandenburger W. Parasitische Pilze an Gefäßpflanzen in Europa. Stuttgart: Spektrum Akademischer Verlag; 1985.

Raper KB, Thom C. A manual of the penicillia. New York, NY: Hefner Publishing Company; 1968.

Ellis MB, Ellis JP. Microfungi on land plants: an identification handbook. New York, NY: Macmillan; 1985.

Sutton BC. The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Kew: Commonwealth Mycological Institute; 1980.

Index Fungorum [Internet]. 2019 [cited 2018 Oct 31]. Available from: http://www.indexfungorum.org/names/Names.asp

Mirek Z, Piękos-Mirkowa H, Zając A, Zając M, editors. Flowering plants and pteridophytes of Poland: a checklist. Cracow: W. Szafer Institute of Botany, Polish Academy of Sciences; 2002. (Biodiversity of Poland; vol 1).

Doyle J, Doyle J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 1987;19:11–15.

White T, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Shinsky J, White T, editors. PCR protocols: a guide to methods and applications. San Diego, CA: Academic Press; 1990. p. 315–322.

Patterson J, Chamberlain B, Thayer D. FinchTV ver. 1.4 [Software]. Seattle, WA: Geospiza Inc.; 2012 [cited 2017 Dec 2]. Available from: https://digitalworldbiology.com/FinchTV

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–2739. https://doi.org/10.1093/molbev/msr121

National Center for Biotechnology Information, U.S. National Library of Medicine. BLAST: Basic Local Alignment Search Tool [Internet]. 2017 [cited 2018 Apr 19]. Available from: https://blast.ncbi.nlm.nih.gov/Blast.cgi

Silva BMA, Prados-Rosales R, Espadas-Moreno J, Wolf JM, Luque-Garcia JL, Gonçalves T, et al. Characterization of Alternaria infectoria extracellular vesicles. Med Mycol. 2014;52:202–210. https://doi.org/10.1093/mmy/myt003

Moslemi A, Ades PK, Groom T, Nicolas ME, Taylor PWJ. Alternaria infectoria and Stemphylium herbarum, two new pathogens of pyrethrum (Tanacetum cinerariifolium) in Australia. Australas Plant Pathol. 2017;46:91–101. https://doi.org/10.1007/s13313-016-0463-y

Woudenberg JHC, Groenewald JZ, Binder M, Crous PW. Alternaria redefined. Stud Mycol. 2013;75:171–212. https://doi.org/10.3114/sim0015

Park RF, Keane PJ, Wingfield MJ, Crous PW. Fungal diseases of eucalypt foliage. In: Keane PJ, Kile GA, Podger FD, Brown BN, editors. Diseases and pathogens of eucalypts. Collingwood: CSIRO Publishing; 2000, p. 153–239.

Henslow JS, Skepper E. Flora of Suffolk: a catalogue of the plants (indigenous or naturalized) found in a wild state in the county of Suffolk. Cambridge: Cambridge University Press; 2013. (Cambridge Library Collection – Botany and Horticulture). https://doi.org/10.1017/CBO9781139506892

Bensch K, Groenewald JZ, Braun U, Dijksterhuis J, de Jesús Yáñez-Morales M, Crous PW. Common but different: the expanding realm of Cladosporium. Stud Mycol. 2015;82:23–74. https://doi.org/10.1016/j.simyco.2015.10.001

Eyjólfsdóttir G. Investigation of the fungi of Surtsey 2008. Surtsey Research. 2009;12:105–111.

Houbraken J, Samson RA. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol. 2011;70:1–51. https://doi.org/10.3114/sim.2011.70.01

Houbraken J, Frisvad JC, Samson RA. Taxonomy of Penicillium section Citrina. Stud Mycol. 2011;70:53–138. https://doi.org/10.3114/sim.2011.70.02

Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CHW, Perrone G, et al. Identification and nomenclature of the genus Penicillium. Stud Mycol. 2014;78:343–371. https://doi.org/10.1016/j.simyco.2014.09.001

Liu AR, Chen SC, Wu SY, Xu T, Guo L, Jeewon R, et al. Cultural studies coupled with DNA based sequence analyses and its implication on pigmentation as a phylogenetic marker in Pestalotiopsis taxonomy. Mol Phylogenet Evol. 2010;57:528–535. https://doi.org/10.1016/j.ympev.2010.07.017

Hu H, Jeewon R, Zhou D, Zhou T, Hyde K. Phylogenetic diversity of endophytic Pestalotiopsis species in Pinus armandii and Ribes spp.: evidence from rDNA and β- tubulin gene phylogenies. Fungal Divers. 2007;24:1–22.

Valencia AL, Torres R, Latorre BA. First report of Pestalotiopsis clavispora and Pestalotiopsis spp. causing postharvest stem end rot of avocado in Chile. Plant Dis. 2011;95:492–492. https://doi.org/10.1094/PDIS-11-10-0844

Wenneker M, Pham KTK, Boekhoudt LC, de Boer FA, van Leeuwen PJ, Hollinger TC, et al. First report of Truncatella angustata causing postharvest rot on ‘Topaz’ apples in the Netherlands. Plant Dis. 2016;101:508–508. https://doi.org/10.1094/PDIS-09-16-1374-PDN

Eken C, Spanbayev A, Tulegenova Z, Abiev S. First report of Truncatella angustata causing leaf spot on Rosa canina in Kazakhstan. Australas Plant Dis Notes. 2009;4:44–45.

Espinoza JG, Briceño EX, Keith LM, Latorre BA. Canker and twig dieback of blueberry caused by Pestalotiopsis spp. and a Truncatella sp. in Chile. Plant Dis. 2008;92:1407–1414. https://doi.org/10.1094/PDIS-92-10-1407

Mułenko W, Kozłowska M, Sałata B. Microfungi of the Tatra National Park. A checklist. Cracow: W. Szafer Institute of Botany, Polish Academy of Sciences; 2004.

Watling R. Larger Arctic-Alpine fungi in Scotland. In: Laursen GA, Ammirati JF, Redhead SA, editors. Arctic and Alpine mycology II. Boston, MA: Springer; 1987. p. 17–45. (Environmental Science Research; vol 34). https://doi.org/10.1007/978-1-4757-1939-0_3

Collado I, Aleu J, Hernández-Galán R, Duran-Patron R. Botrytis species: an intriguing source of metabolites with a wide range of biological activities. Structure, chemistry and bioactivity of metabolites isolated from Botrytis species. Curr Org Chem. 2000;4:1261–1286. https://doi.org/10.2174/1385272003375815

Bettucci L, Alonso R, Tiscornia S. Endophytic mycobiota of healthy twigs and the assemblage of species associated with twig lesions of Eucalyptus globulus and E. grandis in Uruguay. Mycol Res. 1999;103:468–472. https://doi.org/10.1017/S0953756298007205

van Ryckegem G, Verbeken A. Fungal diversity and community structure on Phragmites australis (Poaceae) along a salinity gradient in the Scheldt estuary (Belgium). Nova Hedwigia. 2005;80(1–2):173–197. https://doi.org/10.1127/0029-5035/2005/0080-0173

Crous PW, Verkley GJM, Christensen M, Castañeda-Ruiz RF, Groenewald JZ. How important are conidial appendages? Persoonia. 2012;28:126–37. https://doi.org/10.3767/003158512X652624

Šandová M. Contribution to the knowledge of herbicolous Ascomycetes and mitosporic fungi in the Sumava Mountains (Czech Republic). Fritschiana. 2003;42:59–66.

Müller E, Défago G. Beloniella (Sacc.) Boud. und Dibeloniella Nannf., zwei wenig bekannte Discomycetengattungen. Sydowia. 1967;20:157–168.

Keißler K. Mykologische Mitteilungen. I. Nr. 1–30. Annalen des Naturhistorischen Museums in Wien. 1922;35:1–35.

Jaap O. Weitere Beiträge zur Pilzflora von Triglitz in der Prignitz. Verhandlungen des Botanischen Vereins der Provinz Brandenburg. 1922;64:8–60.

Fell JW, Hunter IL. Fungi associated with the decomposition of the black rush, Juncus roemerianus, in South Florida. Mycologia. 1979;71:322–342. https://doi.org/10.2307/3759156

Ceska O, Ceska A. Observation 134698: Phaeosphaeria vagans (Niessl) O. E. Erikss. [Internet]. 2013 [cited 2018 Apr 19]. Available from: http://mushroomobserver.org/observer/show_observation/134698

Webster J. Graminicolous pyrenomycetes. V. Conidial states of Leptosphaeria michotii, L. microscopica, Pleospora vagans and the perfect state of Dinemasporium graminum. Transactions of the British Mycological Society. 1955;38:347–365. https://doi.org/10.1016/S0007-1536(55)80038-1

Svrček M. New or less known Discomycetes. XIV. Czech Mycol. 1986;40:203–2017.

Mycobank. Specimen record #105812 n.d. [Internet]. 2019 [cited 2018 Jun 14]. Available from: http://www.mycobank.org/BioloMICS.aspx?Table=Mycobank%20specimens&Rec=105812&Fields=All