Culinary and Medicinal Mushrooms: Insight into Growing Technologies

Piotr Zięba, Agnieszka Sękara, Katarzyna Sułkowska-Ziaja, Bożena Muszyńska

Abstract


Humans have used mushrooms from the beginning of their history. However, during the last few decades, the market demand for these fruiting bodies has increased significantly owing to the spread in the capabilities of culinary and pharmacological exploitation. Natural mushroom resources have become insufficient to meet the support needs. Therefore, traditional methods of extensive cultivation as well as modern technologies have been exploited to develop effective growing recommendations for dozens of economically important mushroom species. Mushrooms can decompose a wide range of organic materials, including organic waste. They play a fundamental role in nutrient cycling and exchange in the environment. The challenge is a proper substrate composition, including bio-fortified essential elements, and the application of growing conditions to enable a continuous supply of fruiting bodies of market quality and stabilized chemical composition. Many mushroom species are used for food preparation. Moreover, they are treated as functional foods, because they have health benefits beyond their nutritional value, and are used as natural medicines in many countries. Owing to the rapid development of mushroom farming, we reviewed the growing technologies used worldwide for mushroom species developed for food, processing, and pharmacological industries.

Keywords


mushroom cultivation; Agaricus bisporus; Auricularia spp.; Ganoderma lucidum; Lentinula edodes; Pleurotus spp.

Full Text:

PDF XML (JATS)

References


Ahmed, M., Abdullah, N., Ahmed, K. U., & Bhuyan, M. H. M. (2013). Yield and nutritional composition of oyster mushroom strains newly introduced in Bangladesh. Pesquisa Agropecuária Brasileira, 48(2), 197–202. https://doi.org/10.1590/S0100- 204X2013000200010

Ahmed, S. A., Kadam, J. A., Mane, V. P., Patil, S. S., & Baig, M. M. V. (2009). Biological efficiency and nutritional contents of Pleurotus florida (Mont.) Singer cultivated on different agro-wastes. Nature and Science, 7(1), 44–48.

Alananbeh, K. M., Bouqellah, N. A., & Al Kaff, N. S. (2014). Cultivation of oyster mushroom Pleurotus ostreatus on date-palm leaves mixed with other agro- wastes in Saudi Arabia. Saudi Journal of Biological Sciences, 21(6), 616–625. https://doi.org/10.1016/j.sjbs.2014.08.001

Ali, M. A., Siddiq, M., Ahmad, S., & Hanif, M. A. (2007). Protein and fat contents of various Pleurotus species raised on different waste materials. Pakistan Journal of Agricultural Sciences, 44(3), 440–443.

Altieri, R., Esposito, A., Parati, F., Lobianco, A., & Pepi, M. (2009). Performance of olive mill solid waste as a constituent of the substrate in commercial cultivation of Agaricus bisporus. International Biodeterioration & Biodegradation, 63(8), 993–997. https://doi.org/10.1016/j.ibiod.2009.06.008

Amin, R., Khair, A., Alam, N., & Lee, T. S. (2010). Effect of different substrates and casing materials on the growth and yield of Calocybe indica. Mycobiology, 38(2), 97–101. https://doi.org/10.4489/MYCO.2010.38.2.097

Asatiani, M. D., Elisashvili, V., Songulashvili, G., Reznick, A. Z., & Wasser, S. P. (2011). Higher basidiomycetes mushrooms as a source of antioxidants. In M. Rai & G. Kovics (Eds.), Progress in mycology (pp. 311–326). Springer. https://doi.org/10.1007/978-90-481-3713- 8_11

Awadasseid, A., Hou, J., Gamallat, Y., Xueqi, S., Eugene, K. D., Hago, A. M., Bamba, D., Meyiah, A., Gift, C., & Xin, Y. (2017). Purification, characterization, and antitumor activity of a novel glucan from the fruiting bodies of Coriolus versicolor. PLoS ONE, 12(2), Article e0171270. https://doi.org/10.1371/journal.pone.0171270

Baars, J. J. P., Hendrickx, P. M., & Sonnenberg, A. S. M. (2004). Prototype of a sporeless oyster mushroom. Mushroom Science, 16, 139–147.

Bandara, A. R., Karunarathna, S. C., Mortimer, P. E., Hyde, K. D., Khan, S., Kakumyan, P., & Xu, J. (2017). First successful domestication and determination of nutritional and antioxidant properties of the red ear mushroom Auricularia thailandica (Auriculariales, Basidiomycota). Mycological Progress, 16(11–12), 1029–1039. https://doi.org/10.1007/s11557-017-1344-7

Bao, X. F., Wang, X. S., Dong, Q., Fang, J. N., & Li, X. Y. (2002). Structural features of immunologically active polysaccharides from Ganoderma lucidum. Phytochemistry, 59(2), 175–181. https://doi.org/10.1016/S0031-9422(01)00450-2

Bellettini, M. B., Fiorda, F. A., Maieves, H. A., Teixeira, G. L., Ávila, S., Hornung, P. S., Junior, A. M., & Ribani, R. H. (2019). Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences, 26(4), 633–646. https://doi.org/10.1016/j.sjbs.2016.12.005

Bisen, P. S., Baghel, R. K., Sanodiya, B. S., Thakur, G. S., & Prasad, G. B. K. S. (2010). Lentinus edodes: A macrofungus with pharmacological activities. Current Medicinal Chemistry, 17(22), 2419–2430. https://doi.org/10.2174/092986710791698495

Bonneville, S., Delpomdor, F., Préat, A., Chevalier, C., Araki, T., Kazemian, M., Steele, A., Schreiber, A., Wirth, R., & Benning, L. G. (2020). Molecular identification of fungi microfossils in a Neoproterozoic shale rock. Science Advances, 6(4), Article eaax7599. https://doi.org/10.1126/sciadv.aax7599

Bruns, T. (2006). A kingdom revised. Nature, 443(7113), 758–761. https://doi.org/10.1038/443758a

Buruleanu, L. C., Radulescu, C., Georgescu, A. A., Danet, F. A., Olteanu, R. L., Nicolescu, C. M., & Dulama, I. D. (2018). Statistical characterization of the phytochemical characteristics of edible mushroom extracts. Analytical Letters, 51(7), 1039–1059. https://doi.org/10.1080/00032719.2017.1366499

Carbonero, E. R., Gracher, A. H. P., Komura, D. L., Marcon, R., Freitas, C. S., Baggio, C. H., Santos, A. R. S., Torri, G., Gorin, P. A. J., & Iacomini, M. (2008). Lentinus edodes heterogalactan: Antinociceptive and anti-inflammatory effects. Food Chemistry, 111(3), 531–537. https://doi.org/10.1016/j.foodchem.2008.04.015

Catalogue of Life. (2020). Search. Retrieved January 15, 2020, from http://www.catalogueoflife.org/col/search/all/key/pleurotus/fossil/1/match/1

Chang, S. T. (1977). The origin and early development of straw mushroom cultivation. Economic Botany, 31(3), 374–376. https://doi.org/10.1007/BF02866890

Chen, H. Z., & Chen, J. W. (2004). A preliminary report on solid-state fermentation of Ganoderma lucidum with Radix Astragali containing medium. Journal of Chinese Integrative Medicine, 2(3), 216–218.

Dai, Y. C., Yang, Z. L., Cui, B. K., Yu, C. J., & Zhou, L. W. (2009). Species diversity and utilization of medicinal mushrooms and fungi in China. International Journal of Medicinal Mushrooms, 11(3), 287–302. https://doi.org/10.1615/IntJMedMushr.v11.i3.80

Das, N., & Mukherjee, M. (2007). Cultivation of Pleurotus ostreatus on weed plants. Bioresource Technology, 98(14), 2723–2726. https://doi.org/10.1016/j.biortech.2006.09.061

Devi, P. A., Veeralakshmi, S., Prakasam, V., & Vinothini, M. (2013). Saw dust and wheat bran substrates for the cultivation of new wood ear mushroom [Auricularia polytricha (Mont.)] Sacc. American-Eurasian Journal of Agricultural & Environmental Sciences, 13(12), 1647–1649.

Dong, Q., Wang, Y., Shi, L., Yao, J., Li, J., Ma, F., & Ding, K. (2012). A novel water-soluble β-d-glucan isolated from the spores of Ganoderma lucidum. Carbohydrate Research, 15(353), 100–105. https://doi.org/10.1016/j.carres.2012.02.029

Elhami, B., & Ansari, N. A. (2008). Effect of substrate of spawn production on mycelium growth of oyster mushroom species. Journal of Biological Sciences, 8(2), 474–477. https://doi.org/10.3923/jbs.2008.474.477

Food and Agriculture Organization. (2020). FAOSTAT – Crops. Retrieved January 30, 2020, from http://www.fao.org/faostat/en/#data/QC

Ganeshpurkar, A., Rai, G., & Jain, A. P. (2010). Medicinal mushrooms: Towards a new horizon. Pharmacognosy Reviews, 4(8), 127–135. https://doi.org/10.4103/0973-7847.70904

Gapiński, M., Woźniak, W., & Ziombra, M. (2001). Boczniak – technologia uprawy i przetwarzania [Oyster mushroom – Technology of growing and processing]. PWRiL.

Geösel, A., & Győrfi, J. (2008). Growing experiments with a medicinal mushroom Agaricus blazei (Murrill). International Journal of Horticultural Science, 14(4), 45–48. https://doi.org/10.31421/IJHS/14/4/1532

González-Matute, R., Figlas, D., Devalis, R., Delmastro, S., & Curvetto, N. (2002). Sunflower seed hulls as a main nutrient source for cultivating Ganoderma lucidum. Micologia Aplicada International, 14(2), 19–24.

Gregori, A., & Pohleven, F. (2015). Cultivation of three medicinal mushroom species on olive oil press cakes containing substrates. Acta Agriculturae Slovenica, 103(1), 49–54. https://doi.org/10.14720/aas.2014.103.1.05

Hapuarachchi, K. K., Elkhateeb, W. A., Karunarathna, S. C., Cheng, C. R., Bandara, A. R., Kakumyan, P., Hyde, K. D., Daba, G. M., & Wen, T. C. (2018). Current status of global Ganoderma cultivation, products, industry and market. Mycosphere, 9(5), 1025–1052. https://doi.org/10.5943/mycosphere/9/5/6

Harada, A., Gisusi, S., Yoneyama, S., & Aoyama, M. (2004). Effects of strain and cultivation medium on the chemical composition of the taste components in fruit-body of Hypsizygus marmoreus. Food Chemistry, 84(2), 265–270. https://doi.org/10.1016/S0308-8146(03)00210-3

He, J., Zhang, A., Ru, Q., Dong, D., & Sun, P. (2014). Structural characterization of a water- soluble polysaccharide from the fruiting bodies of Agaricus bisporus. International Journal of Molecular Sciences, 15(1), 787–797. https://doi.org/10.3390/ijms15010787

Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F., Eriksson, O. E., Huhndorf, S., James, T., Krik, M. P., Lucking, R., Lumbsch, H. T., Lutzoni, F., Matheny, R. B., McLaughlin, D. J., Powell, M. J., Redhead, S., Schoch, C. L., Spatafora, J. W., Stalpers, J. A., & Zhang, N. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111(5), 509–547. https://doi.org/10.1016/j.mycres.2007.03.004

Ito, T. (1978). Cultivation of Lentinus edodes. In S. T. Chang & W. A. Hayes (Eds.), The biology and cultivation of edible mushrooms (pp. 461–473). Academic Press. https://doi.org/10.1016/B978-0-12-168050-3.50028-1

Jurak, E., Patyshakuliyeva, A., Vries, R. P., Gruppen, H., & Kabel, M. A. (2015). Compost grown Agaricus bisporus lacks the ability to degrade and consume highly substituted xylan fragments. PLoS ONE, 10(8), Article e0134169. https://doi.org/10.1371/journal.pone.0134169

Kabel, M. A., Jurak, E., Mäkelä, M. R., & Vries, R. P. (2017). Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation. Applied Microbiology and Biotechnology, 101(11), 4363–4369. https://doi.org/10.1007/s00253-017-8294-5

Kayzer, D. (2017). Stan oraz perspektywy rozwoju branży pieczarkarskiej w Polsce [The state and development prospects of the mushroom industry in Poland]. Zeszyty Studenckie Wydziału Ekonomicznego Uniwersytetu Gdańskiego “Nasze Studia”, 8, 230–238.

Kirbag, S., & Akyuz, M. (2008). Effect of various agro-residues on growing periods, yield and biological efficiency of Pleurotus eryngii. Journal of Food, Agriculture & Environment, 6(3–4), 402–405.

Lakshmipathy, R., Harikrishna, P., Naidu, B., & Rao, D. B. (2017). Feasibility of maize stalks for milky mushroom cultivation. International Journal of Current Microbiology and Applied Sciences, 6(2), 1294–1299. https://doi.org/10.20546/ijcmas.2017.602.146

Lechner, B. E., & Albertó, E. (2011). Search for new naturally occurring strains of Pleurotus to improve yields. Pleurotus albidus as a novel proposed species for mushroom production. Revista Iberoamericana de Micología, 28(4), 148–154. https://doi.org/10.1016/j.riam.2010.12.001

Liang, C. H., Wu, C. Y., Lu, P. L., Kuo, Y. C., & Liang, Z. C. (2019). Biological efficiency and nutritional value of the culinary-medicinal mushroom Auricularia cultivated on a sawdust basal substrate supplement with different proportions of grass plants. Saudi Journal of Biological Sciences, 26(2), 263–269. https://doi.org/10.1016/j.sjbs.2016.10.017

Liu, J., Shimizu, K., Konishi, F., Noda, K., Kumamoto, S., Kurashiki, K., & Kondo, R. (2007). Anti-androgenic activities of the triterpenoids fraction of Ganoderma lucidum. Food Chemistry, 100(4), 1691–1696. https://doi.org/10.1016/j.foodchem.2006.01.003

Looney, B. P., Birkebak, J. M., & Matheny, P. B. (2013). Systematics of the genus Auricularia with an emphasis on species from the southeastern United States. North American Fungi, 8(6), 1–25. https://doi.org/10.2509/naf2013.008.006

Manzi, P., & Pizzoferrato, L. (2000). Beta-glucans in edible mushrooms. Food Chemistry, 68(3), 315–318. https://doi.org/10.1016/S0308-8146(99)00197-1

Martos, E. T., Zied, D. C., Junqueira, P. P. G., Rinker, D. L., Silva, R. D., Toledo, R. C. C., & Dias, E. S. (2017). Casing layer and effect of primordia induction in the production of Agaricus subrufescens mushroom. Agriculture and Natural Resources, 51(4), 231–234. https://doi.org/10.1016/j.anres.2017.04.003

Mayuzumi, Y., & Mizuno, T. (1997). III. Cultivation methods of maitake (Grifola frondosa). Food Reviews International, 13(3), 357–364. https://doi.org/10.1080/87559129709541117

Miles, P. G., & Chang, S. T. (2004). Mushrooms: Cultivation, nutritional value, medicinal effect, and environmental impact. CRC Press.

Mori, K. (1987). Cultivated mushrooms in Japan. Developments in Crop Science, 10, 455–459. https://doi.org/10.1016/B978-0-444-42747-2.50055-5

Mothana, R. A., Jansen, R., Jülich, W. D., & Lindequist, U. (2000). Ganomycins A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi. Journal of Natural Products, 63(3), 416–418. https://doi.org/10.1021/np990381y

Muszyńska, B., Kała, K., Rojowski, J., Grzywacz, A., & Opoka, W. (2017). Composition and biological properties of Agaricus bisporus fruiting bodies – A review. Polish Journal of Food and Nutrition Sciences, 67(3), 173–182. https://doi.org/10.1515/pjfns-2016-0032

Muszyńska, B., Pazdur, P., Lazur, J., & Sułkowska-Ziaja, K. (2017). Lentinula edodes (Shiitake) – Biological activity. Medicina Internacia Revuo, 27(108), 189–195.

Muszyńska, B., Sułkowska-Ziaja, K., & Ekiert, H. (2010). Główne grupy związków i pierwiastki z aktywnością biologiczną w wybranych gatunkach grzybów z taksonu Basidiomycota [The main groups of biologicaly active compounds and elements in some species of mushrooms from Basidiomycota taxon]. Farmacja Polska, 66, 804–814.

Numata, M., Tamesue, S., Fujisawa, T., Haraguchi, S., Hasegawa, T., Bae, A. H., Li, C., Sakurai, K., & Shinkai, S. (2006). β-1,3-Glucan polysaccharide (schizophyllan) acting as a one-dimensional host for creating supramolecular dye assemblies. Organic Letters, 8(24), 5533–5536. https://doi.org/10.1021/ol062229a

Nwanze, P. I., Khan, A. U., Ameh, J. B., & Umoh, V. J. (2005). The effects of the interaction of various oil types and rates on the mycelial wet and dry weights of Lentinus squarrosulus (Mont.) Singer and Psathyrella atroumbonata Pegler in submerged liquid cultures. African Journal of Biotechnology, 4(7), 620–626. https://doi.org/10.5897/AJB2005.000- 3111

Obatake, Y., Murakami, S., Matsumoto, T., & Fukumasa-Nakai, Y. (2003). Isolation and characterization of a sporeless mutant in Pleurotus eryngii. Mycoscience, 44(1), 33–40. https://doi.org/10.1007/s10267-002-0074-z

Onuoha, C. I., Uchechi, U., & Onuoha, B. C. (2009). Cultivation of Pleurotus pulmonarius (mushroom) using some agrowaste materials. Agricultural Journal, 4(2), 109–112.

Onyango, B. O., Palapala, V. A., Axama, P. K., Wagai, S. O., & Gichimu, B. M. (2011). Suitability of selected supplemented substrates for cultivation of Kenyan native wood ear mushrooms (Auricularia auricula). American Journal of Food Technology, 6(5), 404–412. https://doi.org/10.3923/ajft.2011.395.403

Palacios, I., García-Lafuente, A., Guillamón, E., & Villares, A. (2012). Novel isolation of water- soluble polysaccharides from the fruiting bodies of Pleurotus ostreatus mushrooms. Carbohydrate Research, 358, 72–77. https://doi.org/10.1016/j.carres.2012.06.016

Palacios, I., Guillamón, E., García-Lafuente, A., & Villares, A. (2012). Structural characterization of water-soluble polysaccharides from the fruiting bodies of Lentinus edodes mushrooms. Current Nutrition & Food Science, 8(4), 235–241. https://doi.org/10.2174/157340112803832165

Paterson, R. R. M. (2006). Ganoderma – A therapeutic fungal biofactory. Phytochemistry, 67(18), 1985–2001. https://doi.org/10.1016/j.phytochem.2006.07.004

Pathmashini, L., Arulnandhy, V., & Wijeratnam, R. S. (2009). Cultivation of oyster mushroom (Pleurotus ostreatus) on sawdust. Ceylon Journal of Science (Biological Sciences), 37(2), 177–182. https://doi.org/10.4038/cjsbs.v37i2.505

Patyshakuliyeva, A., Jurak, E., Kohler, A., Baker, A., Battaglia, E., Bruijn, W., Burton, K. S., Challen, M. P., Coutinho, P. M., Eastwood, D. C., Gruben, B. S., Mäkelä, M. R., Martin, F., Nadal, M., Brink, J., Wiebenga, A., Zhou, M., Henrissat, B., Kabel, M., & Vries, R. P. (2013). Carbohydrate utilization and metabolism is highly differentiated in Agaricus bisporus. BMC Genomics, 14, Article 663. https://doi.org/10.1186/1471-2164- 14-663

Peksen, A., & Yakupoglu, G. (2009). Tea waste as a supplement for the cultivation of Ganoderma lucidum. World Journal of Microbiology and Biotechnology, 25(4), 611–618. https://doi.org/10.1007/s11274-008-9931-z

Peng, J. T., Lee, C. M., & Tsai, Y. F. (2000). Effect of rice bran on the production of different king oyster mushroom strains during bottle cultivation. Journal of Agricultural Research of China, 49, 60–67.

Pérez-Clavijo, M., Tello-Martín, M. L., Roncero-Ramos, I., & Grifoll-García, V. (2016). Optimization of Ganoderma lucidum cultivation and comparison of bioactive compounds in fruiting bodies, spores and mycelium. In Proceedings of The International Society for Mushroom Science (Vol. 19, Article 107). The International Society for Mushroom Science.

Philippoussis, A., Zervakis, G., & Diamantopoulou, P. (2001). Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World Journal of Microbiology and Biotechnology, 17(2), 191–200. https://doi.org/10.1023/A:1016685530312

Pilotti, C. A. (2005). Stem rots of oil palm caused by Ganoderma boninense: Pathogen biology and epidemiology. Mycopathologia, 159(1), 129–137. https://doi.org/10.1007/s11046-004-4435-3

Pilotti, C. A., Sanderson, F. R., Aitken, E. A., & Armstrong, W. (2004). Morphological variation and host range of two Ganoderma species from Papua New Guinea. Mycopathologia, 158(2), 251–265. https://doi.org/10.1023/B:MYCO.0000041833.41085.6f

Rahman, T., & Choudhury, M. B. K. (2012). Shiitake mushroom: A tool of medicine. Bangladesh Journal of Medical Biochemistry, 5(1), 24–32. https://doi.org/10.3329/bjmb.v5i1.13428

Ritota, M., & Manzi, P. (2019). Pleurotus spp. cultivation on different agri-food by-products: Example of biotechnological application. Sustainability, 11(18), Article 5049. https://doi.org/10.3390/su11185049

Riu, H., Roig, G., & Sancho, J. (1997). Production of carpophores of Lentinus edodes and Ganoderma lucidum grown on cork residues. Microbiologia, 13(2), 185–192.

Roupas, P., Keogh, J., Noakes, M., Margetts, C., & Taylor, P. (2012). The role of edible mushrooms in health: Evaluation of the evidence. Journal of Functional Foods, 4(4), 687–709. https://doi.org/10.1016/j.jff.2012.05.003

Royse, D. (2002). Influence of spawn rate and commercial delayed release nutrient levels on Pleurotus cornucopiae (oyster mushroom) yield, size, and time to production. Applied Microbiology and Biotechnology, 58(4), 527–531. https://doi.org/10.1007/s00253-001-0915-2

Royse, D. J., Baars, J., & Tan, Q. (2017). Current overview of mushroom production in the world. In D. C. Zied & A. Pardo-Giménez (Eds.), Edible and medicinal mushrooms: Technology and applications (pp. 5–13). John Wiley & Sons. https://doi.org/10.1002/9781119149446.ch2

Royse, D. J., & Chalupa, W. (2009). Effects of spawn, supplement and phase II compost additions and time of re-casing second break compost on mushroom (Agaricus bisporus) yield and biological efficiency. Bioresource Technology, 100(21), 5277–5282. https://doi.org/10.1016/j.biortech.2009.02.074

Sainos, E., Díaz-Godínez, G., Loera, O., Montiel-González, A. M., & Sánchez, C. (2006). Growth of Pleurotus ostreatus on wheat straw and wheat-grain-based media: Biochemical aspects and preparation of mushroom inoculum. Applied Microbiology and Biotechnology, 72(4), 812–815. https://doi.org/10.1007/s00253-006-0363-0

Sakson, N. (2017). Co z 40 kg/m2 [What about 40 kg/m2]. Pieczarki, 3, 28–32.

Sanodiya, B. S., Thakur, G. S., Baghel, R. K., Prasad, G. B. K. S., & Bisen, P. S. (2009). Ganoderma lucidum: A potent pharmacological macrofungus. Current Pharmaceutical Biotechnology, 10(8), 717–742. https://doi.org/10.2174/138920109789978757

Sánchez, C. (2004). Modern aspects of mushroom culture technology. Applied Microbiology and Biotechnology, 64(6), 756–762. https://doi.org/10.1007/s00253-004-1569-7

Sánchez, C. (2010). Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 85(5), 1321–1337. https://doi.org/10.1007/s00253-009-2343-7

Schimpf, U., & Schulz, R. (2016). Industrial by-products from white-rot fungi production. Part I: Generation of enzyme preparations and chemical, protein biochemical and molecular biological characterization. Process Biochemistry, 51(12), 2034–2046. https://doi.org/10.1016/j.procbio.2016.08.032

Schlegel, B., Luhmann, U., Haertl, A., & Graefe, U. (2000). Piptamine, a new antibiotic produced by Piptoporus betulinus Lu 9-1. The Journal of Antibiotics, 53(9), 973–974. https://doi.org/10.7164/antibiotics.53.973

Sękara, A., Kalisz, A., Grabowska, A., & Siwulski, M. (2015). Auricularia spp. – Mushrooms as Novel Food and therapeutic agents – A review. Sydowia, 67, 1–10.

Sharma, H. S. S., Lyons, G., & Chambers, J. (2000). Comparison of the changes in mushroom (Agaricus bisporus) compost during windrow and bunker stages of phase I and II. Annals of Applied Biology, 136(1), 59–68. https://doi.org/10.1111/j.1744- 7348.2000.tb00009.x

Siwulski, M., Czerwińska-Nowak, A., & Sobieralski, K. (2007). Biologia i uprawa twardziaka jadalnego-shiitake [Biology and cultivation of Lentinula edodes-shiitake]. PWRiL.

Siwulski, M., Lisiecka, J., Sobieralski, L., Sas-Golak, I., & Jasińska, A. (2011). Biologia, właściwości żywieniowe oraz uprawa twardziaka jadalnego Lentinula edodes (BERK.) SING [Biology, nutritional properties and cultivation of shiitake Lentinula edodes (BERK.) SING]. Postępy Nauk Rolniczych, 63(4), 71–82.

Siwulski, M., Sobieralski, K., & Sas-Golak, I. (2014). Wartość odżywcza i prozdrowotna grzybów [Nutritional and prohealthy value of mushrooms]. Żywność. Nauka. Technologia. Jakość, 92(1), 16–28.

Smiderle, F. R., Carbonero, E. R., Sassaki, G. L., Gorin, P. A., & Iacomini, M. (2008). Characterization of a heterogalactan: Some nutritional values of the edible mushroom Flammulina velutipes. Food Chemistry, 108(1), 329–333. https://doi.org/10.1016/j.foodchem.2007.10.029

Smith, J. F. (1993). The mushroom industry. In D. G. Jones (Ed.), Exploitation of microorganisms (pp. 249–271). Springer. https://doi.org/10.1007/978-94-011-1532- 2_10

Song, Y., Hu, Q., Wu, Y., Pei, F., Kimatu, B. M., Su, A., & Yang, W. (2019). Storage time assessment and shelf-life prediction models for postharvest Agaricus bisporus. LWT, 101, 360–365. https://doi.org/10.1016/j.lwt.2018.11.020

Sözbir, G. D., Bektas, I., & Zulkadir, A. (2015). Lignocellulosic wastes used for the cultivation of Pleurotus ostreatus mushrooms: Effects on productivity. BioResources, 10(3), 4686–4693. https://doi.org/10.15376/biores.10.3.4686-4693

Spahr, D. L. (2009). Edible and medicinal mushrooms of New England and Eastern Canada. North Atlantic Books.

Stamets, P. (2011). Growing gourmet and medicinal mushrooms. Ten Speed Press.

Suarez, C., Ratering, S., Weigel, V., Sacharow, J., Bienhaus, J., Ebert, J., Hirz, A., Ruhl, M., & Schnell, S. (2020). Isolation of bacteria at different points of Pleurotus ostreatus cultivation and their influence in mycelial growth. Microbiological Research, 234, Article 126393. https://doi.org/10.1016/j.micres.2019.126393

Sulistiany, H., Sudirman, L. I., & Dharmaputra, O. S. (2016). Production of fruiting body and antioxidant activity of wild Pleurotus. HAYATI Journal of Biosciences, 23(4), 191–195. https://doi.org/10.1016/j.hjb.2016.07.003

Synytsya, A., Míčková, K., Synytsya, A., Jablonský, I., Spěváček, J., Erban, V., Kováříková, E., & Čopíková, J. (2009). Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydrate Polymers, 76(4), 548–556. https://doi.org/10.1016/j.carbpol.2008.11.021

Szudyga, K. (1998). Stare i nowe metody sporządzania podłoży do uprawy pieczarek [Former and modern methods of preparing substrates for white mushroom cultivation]. Hasło Ogrodnicze, 65(9), 96–97.

Tan, W. C., Kuppusamy, U. R., Phan, C. W., Tan, Y. S., Raman, J., Anuar, A. M., & Sabaratnam, V. (2015). Ganoderma neo-japonicum Imazeki revisited: Domestication study and antioxidant properties of its basidiocarps and mycelia. Scientific Reports, 27(5), Article 12515. https://doi.org/10.1038/srep12515

Tang, L., Xiao, Y., Li, L., Guo, Q., & Bian, Y. (2010). Analysis of genetic diversity among Chinese Auricularia auricula cultivars using combined ISSR and SRAP markers. Current Microbiology, 61(2), 132–140. https://doi.org/10.1007/s00284-010-9587-4

Ueitele, I. S. E., Kadhila-Muanding, N. P., & Matundu, N. (2014). Evaluating the production of Ganoderma mushroom on corn cobs. African Journal of Biotechnology, 13(22), 2215–2219. https://doi.org/10.5897/AJB2014.13650

Van Griensven, J. J. L. D., & Van Roestel, A. J. J. (2004). The cultivation of the button mushroom, Agaricus bisporus, in the Netherlands: A successful industry. Revista Mexicane de Micologica, 19, 95–102.

Veena, S. S., & Pandey, M. (2011). Paddy straw as a substrate for the cultivation of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. in India. International Journal of Medicinal Mushrooms, 13(4), 397–400. https://doi.org/10.1615/IntJMedMushr.v13.i4.100

Villares, A., Mateo-Vivaracho, L., & Guillamón, E. (2012). Structural features and healthy properties of polysaccharides occurring in mushrooms. Agriculture, 2(4), 452–471. https://doi.org/10.3390/agriculture2040452

Wachtel-Galor, S., Choi, S. W., & Benzie, I. F. F. (2005). Effect of Ganoderma lucidum on human DNA is dose dependent and mediated by hydrogen peroxide. Redox Report, 10(3), 145–149. https://doi.org/10.1179/135100005X57355

Wang, J., & Zhang, L. (2009). Structure and chain conformation of five water-soluble derivatives of a β-d-glucan isolated from Ganoderma lucidum. Carbohydrate Research, 344(1), 105–112. https://doi.org/10.1016/j.carres.2008.09.024

Wangun, H. V. K., Berg, A., Hertel, W., Nkengfack, A. E., & Hertweck, C. (2004). Anti-inflammatory and anti-hyaluronate lyase activities of lanostanoids from Piptoporus betulinus. The Journal of Antibiotics, 57(11), 755–758. https://doi.org/10.7164/antibiotics.57.755

Wanzenböck, E., Apprich, S., Tirpanalan, Ö., Zitz, U., Kracher, D., Schedle, K., & Kneifel, W. (2017). Wheat bran biodegradation by edible Pleurotus fungi – A sustainable perspective for food and feed. LWT, 86, 123–131. https://doi.org/10.1016/j.lwt.2017.07.051

Wasser, S. P. (2005). Shiitake (Lentinus edodes). In P. M. Coates, M. Blackman, G. M. Cragg, J. Levine, & D. J. White (Eds.), Encyclopedia of dietary supplements (pp. 653–665). CRC Press.

Wasser, S. P., & Weis, A. L. (1999). General description of the most important medicinal higher Basidiomycetes mushrooms. International Journal of Medicinal Mushrooms, 1(4), 351–370. https://doi.org/10.1615/IntJMedMushr.v1.i4.80

Werner, A. R., & Beelman, R. B. (2002). Growing high-selenium edible and medicinal button mushrooms [Agaricus bisporus (J. Lge) Imbach] as ingredients for functional foods or dietary supplements. International Journal of Medicinal Mushrooms, 4(2), 1–6. https://doi.org/10.1615/IntJMedMushr.v4.i2.100

Wu, C. Y., Liang, C. H., Wu, K. J., Shih, H. D., & Liang, Z. C. (2017). Effect of different proportions of agrowaste on cultivation yield and nutritional composition of the culinary-medicinal jelly mushroom Auricularia polytricha (higher Basidiomycetes). International Journal of Medicinal Mushrooms, 19(4), 377–385. https://doi.org/10.1615/IntJMedMushrooms.v19.i4.80

Xu, J. W., Zhao, W., & Zhong, J. J. (2010). Biotechnological production and application of ganoderic acids. Applied Microbiology and Biotechnology, 87(2), 457–466. https://doi.org/10.1007/s00253-010-2576-5

Xu, S., Xu, X., & Zhang, L. (2012). Branching structure and chain conformation of water- soluble glucan extracted from Auricularia auricula-judae. Journal of Agricultural and Food Chemistry, 60(13), 3498–3506. https://doi.org/10.1021/jf300423z

Xu, X., Yan, H., Chen, J., & Zhang, X. (2011). Bioactive proteins from mushrooms. Biotechnology Advances, 29(6), 667–674. https://doi.org/10.1016/j.biotechadv.2011.05.003

Yamanaka, K. (2017). Cultivation of mushroom in plastic bottles and small bags. In D. C. Zied & A. Pardo-Giménez (Eds.), Edible and medicinal mushrooms: Technology and applications (pp. 309–338). John Wiley & Sons. https://doi.org/10.1002/9781119149446.ch15

Yildiz, S., Yildiz, Ü. C., Gezer, E. D., & Temiz, A. (2002). Some lignocellulosic wastes used as raw material in cultivation of the Pleurotus ostreatus culture mushroom. Process Biochemistry, 38(3), 301–306. https://doi.org/10.1016/S0032-9592(02)00040-7

Zhai, F. H., & Han, J. R. (2018). Decomposition of asparagus old stalks by Pleurotus spp. under mushroom-growing conditions. Scientia Horticulturae, 231(27), 11–14. https://doi.org/10.1016/j.scienta.2017.12.017

Zhang, L., Liu, Z., Sun, Y., Wang, X., & Li, L. (2020). Combined antioxidant and sensory effects of active chitosan/zein film containing α-tocopherol on Agaricus bisporus. Food Packaging and Shelf Life, 24, Article 100470. https://doi.org/10.1016/j.fpsl.2020.100470

Zhang, R. Y., Hu, D. D., Gu, J. G., Hu, Q. X., Zuo, X. M., & Wang, H. X. (2012). Development of SSR markers for typing cultivars in the mushroom Auricularia auricula-judae. Mycological Progress, 11(2), 587–592. https://doi.org/10.1007/s11557-011-0798-2

Zhang, X. Y., Bau, T., & Ohga, S. (2018). Biological characteristics and cultivation of fruit body of wild edible mushroom Auricularia villosula. Journal of the Faculty of Agriculture, Kyushu University, 63(1), 5–14.

Zhou, X., Lin, J., Yin, Y., Zhao, J., Sun, X., & Tang, K. (2007). Ganodermataceae: Natural products and their related pharmacological functions. The American Journal of Chinese Medicine, 35(04), 559–574. https://doi.org/10.1142/S0192415X07005065

Zhou, X. W., Su, K. Q., & Zhang, Y. M. (2012). Applied modern biotechnology for cultivation of Ganoderma and development of their products. Applied Microbiology and Biotechnology, 93(3), 941–963. https://doi.org/10.1007/s00253-011-3780-7

Zied, D. C., Pardo-González, J. E., Minhoni, M. T. A., & Pardo-Giménez, A. (2011). A reliable quality index for mushroom cultivation. Journal of Agricultural Science, 3(4), 50–61. https://doi.org/10.5539/jas.v3n4p50

Zięba, P., Kała, K., Włodarczyk, A., Szewczyk, A., Kunicki, E., Sękara, A., & Muszyńska, B. (2020). Selenium and zinc biofortification of Pleurotus eryngii mycelium and fruiting bodies as a tool for controlling their biological activity. Molecules, 25(4), Article 889. https://doi.org/10.3390/molecules25040889




DOI: https://doi.org/10.5586/am.5526

Journal ISSN:
  • 2353-074X (online)
  • 0001-625X (print; ceased since 2015)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society