Impact of Manganese on Pollen Germination and Tube Growth in Lily

Thomas Sawidis, Gülriz Baycu, Elżbieta Weryszko-Chmielewska, Aneta Sulborska

Abstract


In vitro culture of Lilium longiflorum pollen grains was carried out to determine the role of manganese in pollen germination and pollen tube growth. Pollen germination was adversely affected by the presence of manganese (>10−8 M), whereas low concentrations (10−12–10−10 M) stimulated the process. Manganese caused morphological anomalies during tube growth, characterized by irregular pollen tube thickening and swollen tips. The main effect was the anomalous cell wall formation at the tip, in which the presence of several organelles reduced the number of secretory vesicles. A loose network of fibrillar material and spherical aggregates, mostly in the tip region, was detected, and this material was progressively loosened into the surrounding medium. As a response to potential toxicity, the excess manganese was isolated in vacuoles, which formed an internal barrier against penetration of manganese to the tip area. Elevated manganese concentrations might affect plant reproduction, resulting in anomalies in gamete development. Consequently, the loss in genetic diversity and decreased fruit set ultimately lower yield.

Keywords


Lilium; pollen tube; mitochondria; heavy metal; cell wall; dehydration; fertilization; internal barrier

Full Text:

PDF XML (JATS)

References


Ahmad, S., Rana, A., Sharma, R., & Agnihotri, R. K. (2012). Effect of different media and boric acid on pollen germination and tube of Tribulus terrestris – A traditional medicinal plant. International Journal of Pharmaceutical Sciences Review and Research, 13(2), 77–79.

Alejandro, S., Höller, S., Meier, B., & Edgar, E. (2020). Manganese in plants: From acquisition to subcellular allocation. Frontiers in Plant Science, 11, Article 300. https://doi.org/10.3389/fpls.2020.00300

Andresen, E., Peiter, E., & Küpper, H. (2018). Trace metal metabolism in plants. Journal of Experimental Botany, 69(5), 909–954. https://doi.org/10.1093/jxb/erx465

Bhattacharya, A. (2017). Impact of some heavy metals and pesticides on in vivo pollen germination of Solanum distichum Schumach. & Thonn. (Solanaceae) growing in Darjeeling Himalaya. Trends in Biosciences, 10(4), 9293–9296.

Bhattacharya, A., & Mandal, S. (2004). Pollination, pollen germination and stigma receptivity in Moringa oleifera Lamk. Grana, 43, 48–56. https://doi.org/10.1080/00173130310016211

Bruch, E. M., Thomine, S., Tabares, L. C., & Un, S. (2015). Variations in Mn (II) speciation among organisms: What makes D. radiodurans different. Metallomics, 7, 136–144. https://doi.org/10.1039/C4MT00265B

Cai, G., Parrotta, L., & Cresti, M. (2015). Organelle trafficking, the cytoskeleton and pollen tube growth. Journal of Integrative Plant Biology, 57(1), 63–78. https://doi.org/10.1111/jipb.12289

Corpas, F. J., Barroso, J. B., Palma, J. M., & Rodriguez-Ruiz, M. (2017). Plant peroxisomes: A nitro-oxidative cocktail. Redox Biology, 11, 535–542. https://doi.org/10.1016/j.redox.2016.12.033

Cox, R. M. (1988). The sensitivity of pollen from various coniferous and broad-leaved trees to combinations of acidity and trace metals. New Phytologist, 109, 193–201. https://doi.org/10.1111/j.1469-8137.1988.tb03708.x

Çetinbaş-Genç, A., Gai, G., Vardar, F., & Ünal, M. (2019). Differential effects of low and high temperature stress on pollen germination and tube length of hazelnut (Corylus avellana L.) genotypes. Scientia Horticulturae, 255, 61–69. https://doi.org/10.1016/j.scienta.2019.05.024

Dafni, A., & Firmage, D. (2000). Pollen viability and longevity: Practical, ecological and evolutionary implications. Plant Systematics and Evolution, 222, 113–132. https://doi.org/10.1007/BF00984098

Diedrick, K. (2010). Manganese fertility in soybean production. Pioneer. https://www.pioneer.com/us/agronomy/manganese_deficiency.html

Donner, E., Punshon, T., Guerinot, M. L., & Lombi, E. (2012). Functional characterisation of metal(loid) processes in planta through the integration of synchrotron techniques and plant molecular biology. Analytical and Bioanalytical Chemistry, 402, 3287–3298. https://doi.org/10.1007/s00216-011-5624-9

Dou, C. M., Fu, X. P., Chen, X. C., Shi, J. Y., & Chen, Y. X. (2009). Accumulation and detoxification of manganese in hyperaccumulator Phytolacca americana. Plant Biology, 11, 664–670. https://doi.org/10.1111/j.1438-8677.2008.00163.x

Dučić, T., & Polle, P. (2007). Manganese toxicity in two varieties of Douglas fir (Pseudotsuga menziesii var. viridis and glauca) seedlings as affected by phosphorus supply. Functional Plant Biology, 34(1), 31–40. https://doi.org/10.1071/FP06157

Fecht-Christoffers, M. M., Führs, H., Braun, H. P., & Horst, W. J. (2006). The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance. Plant Physiology, 140, 1451–1463. https://doi.org/10.1104/pp.105.070474

Fusconi, A., Gallo, C., & Camusso, W. (2007). Effects of cadmium on root apical meristems of Pisum sativum L.: Cell viability, cell proliferation and microtubule pattern as suitable markers for assessment of stress pollution. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 632(1–2), 9–19. https://doi.org/10.1016/j.mrgentox.2007.03.012

Führs, H., Behrens, C., Gallien, S., Heintz, D., Dorsselaer, A., Braun, H. P., & Horst, W. J. (2010). Physiological and proteomic characterization of manganese sensitivity and tolerance in rice (Oryza sativa) in comparison with barley (Hordeum vulgare). Annals of Botany, 105, 1129–1140. https://doi.org/10.1093/aob/mcq046

Gandadikusumah, V. G., Wawangningrum, H., & Rahayu, S. (2017). Pollen viability of Aeschynanthus tricolor Hook. Journal of Tropical Life Science, 7(1), 53–60. https://doi.org/10.11594/jtls.07.01.09

Gur, N., & Topdemir, A. (2005). Effects of heavy metals (Cd, Cu, Pb, Hg) on pollen germination and tube growth of quince (Cydonia oblonga M.) and plum (Prunus domestica L.). Fresenius Environmental Bulletin, 14, 36–39.

Kamran, F. (2000). Honey, pollen and bees as indicator of metal pollution. Acta Universitatis Carolinae, Environmentalica, 14, 13–20.

Lanquar, V., Schnell Ramos, M., Lelièvre, F., Barbier-Brygoo, H., Krieger-Liszkay, A., Krämer, U., & Thomine, S. (2010). Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiology, 152, 1986–1999. https://doi.org/10.1104/pp.109.150946

Leita, L., Muhlbachova, G., Cesco, S., Barbattini, R., & Mondini, C. (1996). Investigation of the use of honey-bees and honey bee products to assess heavy metals contamination. Environmental Monitoring and Assessment, 43, 1–9. https://doi.org/10.1007/BF00399566

Mary, V., Schnell Ramos, M., Gillet, C., Socha, A. L., Giraudat, J., Agorio, A., Merlot, S., Clairet, C., Kim, S. A., Punshon, T., Guerinot, M. L., & Thomine, S. (2015). Bypassing iron storage in endodermal vacuoles rescues the iron mobilization defect in the natural resistance associated-macrophage protein3 natural resistance associated-macrophage protein4 double mutant. Plant Physiology, 169, 748–759. https://doi.org/10.1104/pp.15.00380

McBride, H. M., Neuspiel, M., & Wasiak, S. (2006). Mitochondria: More than just a powerhouse. Current Biology, 16, 551–560. https://doi.org/10.1016/j.cub.2006.06.054

Mousavi, S. R., Rezaei, M. A., & Shahsavari, M. (2011). General overview on manganese (Mn) importance for crops production. Australian Journal of Basic and Applied Sciences, 5(9), 1799–1803.

Pittman, J. K. (2005). Managing the manganese: Molecular mechanisms of manganese transport and homeostasis. New Phytologist, 167, 733–742. https://doi.org/10.1111/j.1469-8137.2005.01453.x

Polevova, S., Breygina, M., Matveyeya, N., & Yermakov, I. (2014). Periplasmic multilamellar membranous structures in Nicotiana tabacum L. pollen grains treated with Ni2+ or Cu2+. Protoplasma, 251, 1521–1525. https://doi.org/10.1007/s00709-014-0651-y

Reuter, D. J., Alston, A. M., & McFarlane, J. D. (1988). Occurrence and correction of manganese deficiency in plants. In R. D. Graham, J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 205–224). Kluwer Academic Publishers. https://doi.org/10.1007/978-94-009-2817-6_15

Rodriguez-Enriquez, M. J., Mehdi, S., Dickinson, H. G., & Grant-Downtown, R. T. (2012). A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen. New Phytologist, 197, 668–679. https://doi.org/10.1111/nph.12037

Röderer, G., & Reiss, H.-D. (1988). Different effects of inorganic and triethyl lead on growth and ultrastructure of lily pollen tubes. Protoplasma, 144, 101–109. https://doi.org/10.1007/BF01637242

Sawidis, T. (1997). Accumulation and effects of heavy metals in Lilium pollen. Acta Horticulturae, 437, 153–158. https://doi.org/10.17660/ActaHortic.1997.437.14

Sawidis, T. (2008). Effect of cadmium on pollen germination and tube growth in Lilium longiflorum and Nicotiana tabacum. Protoplasma, 233, 95–106. https://doi.org/10.1007/s00709-008-0306-y

Sawidis, T., Baycu, G., Cevahir-Öz, G., & Weryszko-Chmielewska, E. (2018). Effect of mercury on pollen germination and tube growth in Lilium longiflorum. Protoplasma, 255, 819–828. https://doi.org/10.1007/s00709-017-1192-y

Sawidis, T., Papadopoulou, A., & Voulgaropoulou, M. (2014). Effect of zinc on nectar secretion of Hibiscus rosa-sinensis L. Protoplasma, 251, 575–589. https://doi.org/10.1007/s00709-013-0557-0

Sawidis, T., & Reiss, H.-D. (1995). Effects of heavy metals on pollen tube growth and ultrastructure. Protoplasma, 185, 113–122. https://doi.org/10.1007/BF01272851

Serregin, I., & Kozhevnikova, D. (2009). Transport and distribution of nickel in higher plants. In A. Barket, S. Hayat, & A. Ahmad (Eds.), Nickel in relation to plants (pp. 11–32). Narosa Publishing House.

Sharma, C. P., Sharma, P. N., Chatterjee, C., & Agarwala, S. C. (1991). Manganese deficiency in maize affects pollen viability. Plant and Soil, 138, 139–142. https://doi.org/10.1007/BF00011816

Sharma, P. N. (1992). Pollen fertility in manganese-deficient wheat. Tropical Agriculture, 69, 21–24.

Somerville, D. C., & Nicol, H. I. (2002). Mineral content of honeybee-collected pollen from southern New South Wales. Australian Journal of Experimental Agriculture, 42(8), 1131–1136. https://doi.org/10.1071/ea01086

Speranza, A., Ferri, P., Battistelli, M., Falcieri, E., Crinelli, R., & Scoccianti, V. (2007). Both trivalent and hexavalent chromium strongly alter in vitro germination and ultrastructure of kiwifruit pollen. Chemosphere, 66, 1165–1174. https://doi.org/10.1016/j.chemosphere.2006.08.019

Stebbing, A. R. D. (1998). A theory for growth hormesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 403(1–2), 249–258. https://doi.org/10.1016/S0027-5107(98)00014-1

Turner, N. C., Abbo, S., Berger, J. D., Chaturvedi, S. K., French, R. J., Ludwig, C., Mannur, D. M., Unyayar, S. J., Keles, S. Y., & Unal, E. (2004). Proline and ABA levels in two sunflower genotypes subjected to tolerance in water stress. Bulgarian Journal of Plant Physiology, 30(3–4), 34–47.

Wang, Q., Lu, L., Wu, X., Li, Y., & Lin, J. (2003). Boron influences pollen germination and pollen tube growth in Picea meyeri. Tree Physiology, 23(5), 345–351. https://doi.org/10.1093/treephys/23.5.345

Xiong, Z.-T., & Peng, Y.-H. (2001). Response of pollen germination and tube growth to cadmium with special reference to low concentration exposure. Ecotoxicology and Environmental Safety, 48(1), 51–52. https://doi.org/10.1006/eesa.2000.2002

Zhao, J., Wang, W., Zhou, H., Wang, R., Zhang, P., & Wang, H. (2017). Manganese toxicity inhibited root growth by disrupting auxin biosynthesis and transport in Arabidopsis. Frontiers in Plant Science, 8, Article 272. https://doi.org/10.3389/fpls.2017.00272




DOI: https://doi.org/10.5586/aa.746

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society