Nectar Production and Spectrum of Insect Visitors in Six Varieties of Highbush Blueberry (Vaccinium corymbosum L.) in SE Poland

Małgorzata Bożek

Abstract


The attractiveness of plants to pollinators depends strongly on flower rewards, especially nectar and pollen. Nectar mass, sugar concentration, and sugar mass are known to influence the spectrum and abundance of insect visitors. Respective data on nectar secretion in highbush blueberry (Vaccinium corymbosum) under the climatic conditions of Poland are scarce. This study was conducted in 2002–2005 to assess flower abundance, nectar production, and insect visitors in six varieties of V. corymbosum in Niemce, SE Poland. Flower abundance ranged from 1.63 ± 0.64 (‘Darrow’) to 4.07 ± 0.95 in thousands of flowers per shrub (‘Northland’). Nectar mass, sugar concentration, and nectar sugar mass increased with flower age, peaking between the sixth and ninth day. Significant differences in nectar characteristics occurred between years and between varieties. ‘Bluecrop’ and ‘Darrow’ produced the largest nectar mass (19.08 ± 7.09 and 16.60 ± 8.31 mg nectar per flower, respectively) and nectar sugar mass per flower (6.39 ± 1.52 and 5.76 ± 1.51 mg sugar per flower, respectively). The estimated sugar yield in the studied V. corymbosum varieties ranged from 9.4 ± 3.3 to 20.7 ± 3.8 g sugar per shrub (‘Croatan’ and ‘Bluecrop,’ respectively). Regarding insect visitors, only honey bees and bumble bees were observed. Honey bees comprised 81%–98% of the total number of observed insect visitors. Highbush blueberry, due to abundant blooming and high per-flower sugar yield, is thus a good source of nectar sugars for honey bees.

Keywords


highbush blueberry; nectar production; nectar sugars; insect visitors; honey bees

Full Text:

PDF XML (JATS)

References


Antoń, S., & Denisow, B. (2018). Floral phenology and pollen production in the five nocturnal Oenothera species (Onagraceae). Acta Agrobotanica, 71(2), Article 1738. https://doi.org/10.5586/aa.1738

Bertazzini, M., & Forlani, G. (2016). Intraspecific variability of floral nectar volume and composition in rapeseed (Brassica napus L. var. oleifera). Frontiers in Plant Science, 7, Article 288. https://doi.org/10.3389/fpls.2016.00288

Bisui, S., Layek, U., & Karmakar, P. (2020). Utilization of Indian dammar bee (Tetragonula iridipennis Smith) as a pollinator of bitter gourd. Acta Agrobotanica, 73(1), Article 7316. https://doi.org/10.5586/aa.7316

Bommarco, R., Marini, L., & Vaissière, B. E. (2012). Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia, 169, 1025–1032. https://doi.org/10.1007/s00442-012-2271-6

Bożek, M. (2009). Flowering and fruit set of six cultivars of highbush blueberry (Vaccinium corymbosum L.) in the conditions of the Lublin region. Acta Agrobotanica, 62(1), 91–96. https://doi.org/10.5586/aa.2009.011

Bożek, M. (2012). The effect of pollinating insects on fruiting of two cultivars of Lonicera caerulea L. Journal of Apicultural Science, 56(2), 5–11. https://doi.org/10.2478/v10289-012-0018-6

Bożek, M. (2019). Nectar secretion and pollen production in Hyacinthus orientalis ‘Sky Jacket’ (Asparagaceae). Acta Agrobotanica, 72(4), Article 1796. https://doi.org/10.5586/aa.1796

Bożek, M., & Wieniarska, J. (2006). Biologia kwitnienia i wydajność cukrowa kwiatów dwóch odmian Lonicera kamtschatica (Sevast.) Pojark [Blooming biology and sugar efficiency of two cultivars of Lonicera kamtschatica (Sevast.) Pojark]. Acta Agrobotanica, 59(1), 177–182. https://doi.org/10.5586/aa.2006.018

Brodie, J. F., Aslan, C. E., Rogers, H. S., Redford, K. H., Maron, J. L., Bronstein, J. L., & Groves, C. R. (2014). Secondary extinctions of biodiversity. Trends in Ecology and Evolution, 29(12), 664–672. https://doi.org/10.1016/j.tree.2014.09.012

Brown, M., & Brown, M. J. F. (2020). Nectar preferences in male bumblebees. Insectes Sociaux, 67, 221–228. https://doi.org/10.1007/s00040-020-00751-y

Cameron, S. A., Lozier, J. D., Strange, J. P., Koch, J. B., Cordes, N., Solter, L. F., & Griswold, T. L. (2011). Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences of the United States of America, 108(2), 662–667. https://doi.org/10.1073/pnas.1014743108

Cardeñosa, V., Girones-Vilaplana, A., Muriel, J. L., Moreno, D. A., & Moreno-Rojas, J. M. (2016). Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.). Food Chemistry, 202, 276–283. https://doi.org/10.1016/j.foodchem.2016.01.118

Castle, D., Grass, I., & Westphal, C. (2019). Fruit quantity and quality of strawberries benefit from enhanced pollinator abundance at hedgerows in agricultural landscapes. Agriculture, Ecosystems and Environment, 275, 14–22. https://doi.org/10.1016/j.agee.2019.01.003

Courcelles, D. M. M., Button, L., & Elle, E. (2013). Bee visit rates vary with floral morphology among highbush blueberry cultivars (Vaccinium corymbosum L.). Journal of Applied Entomology, 137(9), 693–701. https://doi.org/10.1111/jen.12059

Dance, C., Botías, C., & Goulson, D. (2017). The combined effects of a monotonous diet and exposure to thiamethoxam on the performance of bumblebee micro-colonies. Ecotoxicology and Environmental Safety, 139, 194–201. https://doi.org/10.1016/j.ecoenv.2017.01.041

de Luca, P. A., & Vallejo-Marín, M. (2013). What’s the “buzz” about? The ecology and evolutionary significance of buzz-pollination. Current Opinion in Plant Biology, 16(4), 429–435. https://doi.org/10.1016/j.pbi.2013.05.002

de O. Milfont, M., Rocha, E. E. M., Lima, A. O. N., & Freitas, B. M. (2013). Higher soybean production using honeybee and wild pollinators, a sustainable alternative to pesticides and autopollination. Environmental Chemistry Letters, 11, 335–341. https://doi.org/10.1007/s10311-013-0412-8

Denisow, B. (2002). The influence of the degree of pollination of black currant flowers (Ribes nigrum L.) on the number of seeds in fruits and its size. Annales Universitatis Mariae Curie-Sklodowska, Sectio EEE Horticultura, 11, 11–18.

Denisow, B., Masierowska, M., & Antoń, S. (2016). Floral nectar production and carbohydrate composition and the structure of receptacular nectaries in the invasive plant Bunias orientalis L. (Brassicaceae). Protoplasma, 253(6), 1489–1501. https://doi.org/10.1007/s00709-015-0902-6

Denisow, B., Strzałkowska-Abramek, M., Bożek, M., & Jeżak, A. (2014). Early spring nectar and pollen and insect visitor behavior in two Corydalis species (Papaveraceae). Journal of Apicultural Science, 58(1), 93–102. https://doi.org/10.2478/jas-2014-0009

Denisow, B., Strzałkowska-Abramek, M., & Wrzesień, M. (2018). Nectar secretion and pollen production in protandrous flowers of Campanula patula L. (Campanulaceae). Acta Agrobotanica, 71(1), Article 1734. https://doi.org/10.5586/aa.1734

dos Santos, S. A. B., Roselino, A. C., Hrncir, M., & Bego, L. R. (2009). Pollination of tomatoes by the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera (Hymenoptera, Apidae). Genetics and Molecular Research, 8(2), 751–757. https://doi.org/10.4238/vol8-2kerr015

Enkegaard, A., Kryger, P., & Boelt, B. (2016). Determinants of nectar production in heather. Journal of Apicultural Research, 55(1), 100–106. https://doi.org/10.1080/00218839.2016.1192342

Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J., & Brown, M. J. F. (2014). Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature, 506(7488), 364–366. https://doi.org/10.1038/nature12977

Gallai, N., Salles, J. M., Settele, J., & Vaissière, B. E. (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68(3), 810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014

Garratt, M. P. D., Breeze, T. D., Jenner, N., Polce, C., Biesmeijer, J. C., & Potts, S. G. (2014). Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agriculture, Ecosystems and Environment, 184, 34–40. https://doi.org/10.1016/j.agee.2013.10.032

Geldmann, J., & González-Varo, J. P. (2018). Conserving honey bees does not help wildlife. Science, 359(6374), 392–393. https://doi.org/10.1126/science.aar2269

Hayashi, M., Nakamura, J., Sasaki, K., & Harano, K.-I. (2016). Honeybee males use highly concentrated nectar as fuel for mating flights. Journal of Insect Physiology, 93–94, 50–55. https://doi.org/10.1016/j.jinsphys.2016.08.007

Heil, M. (2011). Nectar: Generation, regulation and ecological functions. Trends in Plant Science, 16(4), 191–200. https://doi.org/10.1016/j.tplants.2011.01.003

Hoffman, G. D., Lande, C., & Rao, S. (2018). A novel pollen transfer mechanism by honey bee foragers on highbush blueberry (Ericales: Ericaceae). Environmental Entomology, 47(6), 1465–1470. https://doi.org/10.1093/ee/nvy162

Jabłoński, B. (2002). Notes on the method to investigate nectar secretion rate in flowers. Journal of Apicultural Science, 46(2), 117–125.

Jabłoński, B., Kołtowski, Z., & Szklanowska, K. (1997). Nektarowanie i wydajność cukrowa ważniejszych odmian porzeczki czarnej (Ribes nigrum L.) [Nectar secretion and sugar efficiency of some cultivars of black currant (Ribes nigrum L.)]. Pszczelnicze Zeszyty Naukowe, 41, 7–17.

Jabłoński, B., Król, S., Pliszka, K., & Żurowska, Z. (1983). Nektarowanie i zapylanie borówki wysokiej (Vaccinium corymbosum L.) [Nectar production and pollination of highbush blueberry (Vaccinium corymbosum L.)]. Pszczelnicze Zeszyty Naukowe, 27, 91–109.

Jachuła, J., Denisow, B., & Strzałkowska-Abramek, M. (2019). Floral reward and insect visitors in six ornamental Lonicera species-plants suitable for urban bee-friendly gardens. Urban Forestry & Urban Greening, 44, Article 126390. https://doi.org/10.1016/j.ufug.2019.126390

Jachuła, J., Denisow, B., & Strzałkowska-Abramek, M. (2020). Does an invader have a bright side? Floral reward in two Solidago species. Journal of Apicultural Research, 59(4), 599–608. https://doi.org/10.1080/00218839.2019.1703086

Jachuła, J., Denisow, B., & Wrzesień, M. (2018). Validation of floral food resources for pollinators in agricultural landscape in SE Poland. Journal of the Science of Food and Agriculture, 98(7), 2672–2680. https://doi.org/10.1002/jsfa.8761

Jachuła, J., Konarska, A., & Denisow, B. (2018). Micromorphological and histochemical attributes of flowers and floral reward in Linaria vulgaris (Plantaginaceae). Protoplasma, 255(6), 1763–1776. https://doi.org/10.1007/s00709-018-1269-2

Kevan, P. G., & Phillips, T. P. (2001). The economic impacts of pollinator declines: An approach to assessing the consequences. Ecology and Society, 5(1), Article 8. https://doi.org/10.5751/ES-00272-050108

Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274, 303–313. https://doi.org/10.1098/rspb.2006.3721

Lindström, S. A. M., Herbertsson, L., Rundlöf, M., Bommarco, R., & Smith, H. G. (2016). Experimental evidence that honeybees depress wild insect densities in a flowering crop. Proceedings of the Royal Society B: Biological Sciences, 283, Article 20161641. https://doi.org/10.1098/rspb.2016.1641

Liu, F., Gao, J., Di, N., & Adler, L. S. (2015). Nectar attracts foraging honey bees with components of their queen pheromones. Journal of Chemical Ecology, 41, 1028–1036. https://doi.org/10.1007/s10886-015-0642-2

Łoś, A., Skórka, P., Strachecka, A., Winiarczyk, S., Adaszek, Ł., Winiarczyk, M., & Wolski, D. (2020). The associations among the breeding performance of Osmia bicornis L. (Hymenoptera: Megachilidae), burden of pathogens and nest parasites along urbanisation gradient. Science of the Total Environment, 710, Article 135520. https://doi.org/10.1016/j.scitotenv.2019.135520

MacKenzie, K. E., & Eickwort, G. C. (1996). Diversity and abundance of bees (Hymenoptera: Apoidea) foraging on highbush blueberry (Vaccinium corymbosum L.) in central New York. Journal of the Kansas Entomological Society, 69(4), 185–194.

Masierowska, M., & Piętka, T. (2014). Variability in nectar and pollen production in flowers of double-low lines of white mustard (Sinapis alba L.) and their attractiveness to honey bees. Acta Scientiarum Polonorum Hortorum Cultus, 13(5), 197–209.

Nagy-Déri, H., Orosz-Kovács, Z., & Farkas, Á. (2013). Comparative studies on nectar from two self-fertile and two self-sterile cultivars of quince (Cydonia oblonga Mill.) and their attractiveness to honeybees. Journal of Horticultural Science and Biotechnology, 88(6), 776–782. https://doi.org/10.1080/14620316.2013.11513038

Nepi, M., Grasso, D. A., & Mancuso, S. (2018). Nectar in plant–insect mutualistic relationships: From food reward to partner manipulation. Frontiers in Plant Science, 9, Article 1063. https://doi.org/10.3389/fpls.2018.01063

Nicolson, S. W., & Thornburg, R. W. (2007). Nectar chemistry. In S. W. Nicolson, M. Nepi, & E. Pacini (Eds.), Nectaries and nectar (pp. 215–264). Springer. https://doi.org/10.1007/978-1-4020-5937-7_5

Palmer-Young, E. C., Farrell, I. W., Adler, L. S., Milano, N. J., Egan, P. A., Irwin, R. E., & Stevenson, P. C. (2019). Secondary metabolites from nectar and pollen: A resource for ecological and evolutionary studies. Ecology, 100(4), Article e02621. https://doi.org/10.1002/ecy.2621

Pereira, A. L. C., Taques, T. C., Valim, J. O. S., Madureira, A. P., & Campos, W. G. (2015). The management of bee communities by intercropping with flowering basil (Ocimum basilicum) enhances pollination and yield of bell pepper (Capsicum annuum). Journal of Insect Conservation, 19, 479–486. https://doi.org/10.1007/s10841-015-9768-3

Pervin, M., Hasnat, M. A., Lim, J. H., Lee, Y. M., Kim, E. O., Um, B. H., & Lim, B. O. (2016). Preventive and therapeutic effects of blueberry (Vaccinium corymbosum) extract against DSS-induced ulcerative colitis by regulation of antioxidant and inflammatory mediators. Journal of Nutritional Biochemistry, 28, 103–113. https://doi.org/10.1016/j.jnutbio.2015.10.006

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: Trends, impacts and drivers. Trends in Ecology and Evolution, 25(6), 345–353. https://doi.org/10.1016/j.tree.2010.01.007

Quinet, M., Warzée, M., Vanderplanck, M., Michez, D., Lognay, G., & Jacquemart, A. L. (2016). Do floral resources influence pollination rates and subsequent fruit set in pear (Pyrus communis L.) and apple (Malus × domestica Borkh) cultivars? European Journal of Agronomy, 77, 59–69. https://doi.org/10.1016/j.eja.2016.04.001

Rhodes, C. J. (2018). Pollinator decline – An ecological calamity in the making? Science Progress, 101(2), 121–160. https://doi.org/ghhptj

Roy, R., Schmitt, A. J., Thomas, J. B., & Carter, C. J. (2017). Review: Nectar biology: From molecules to ecosystems. Plant Science, 262, 148–164. https://doi.org/10.1016/j.plantsci.2017.04.012

Schmidt, K., Filep, R., Orosz-Kovács, Z., & Farkas, Á. (2015). Patterns of nectar and pollen presentation influence the attractiveness of four raspberry and blackberry cultivars to pollinators. Journal of Horticultural Science and Biotechnology, 90(1), 47–56. https://doi.org/10.1080/14620316.2015.11513152

Scott, Z., Ginsberg, H. S., & Alm, S. R. (2016). Native bee diversity and pollen foraging specificity in cultivated highbush blueberry (Ericaceae: Vaccinium corymbosum) in Rhode Island. Environmental Entomology, 45(6), 1432–1438. https://doi.org/10.1093/ee/nvw094

Shackleton, K., Balfour, N. J., Al Toufailia, H., Gaioski, R., Jr, de Matos Barbosa, M., Silva, C. A. d. S., Bento, J. M. S., Alves, D. A, & Ratnieks, F. L. W. (2016). Quality versus quantity: Foraging decisions in the honeybee (Apis mellifera scutellata) feeding on wildflower nectar and fruit juice. Ecology and Evolution, 6, 7156–7165. https://doi.org/10.1002/ece3.2478

Solís-Montero, L., Vergara, C. H., & Vallejo-Marín, M. (2015). High incidence of pollen theft in natural populations of a buzz-pollinated plant. Arthropod–Plant Interactions, 9, 599–611. https://doi.org/10.1007/s11829-015-9397-5

Somme, L., Vanderplanck, M., Michez, D., Lombaerde, I., Moerman, R., Wathelet, B., Wattiez, R., Lognay, G., & Jacquemart, A.-L. (2015). Pollen and nectar quality drivemajor and minor floral choices of bumble bees. Apidologie, 46(1), 92–106. https://doi.org/10.1007/s13592-014-0307-0

Statistics Poland. (2019). Local Data Bank. https://bdl.stat.gov.pl

Strzałkowska-Abramek, M. (2019). Nectar and pollen production in ornamental cultivars of Prunus serrulata (Rosaceae). Folia Horticulturae, 31(1), 205–212. https://doi.org/10.2478/fhort-2019-0015

Sushil, S. N., Stanley, J., Hedau, N. K., & Bhatt, J. C. (2013). Enhancing seed production of three Brassica vegetables by honey bee pollination in north-western Himalayas of India. Universal Journal of Agricultural Research, 1(3), 49–53. https://doi.org/10.13189/ujar.2013.010301

Szklanowska, K., Bożek, M., & Wieniarska, J. (1989). Wartość pszczelarska i owocowanie 11 nowych odmian malin (Rubus idaeus L.) [Beekeeping value and fruit crop of eleven new raspberry cultivars (Rubus idaeus L.)]. Pszczelnicze Zeszyty Naukowe, 33, 77–88.

Thomson, D. M. (2016). Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources. Ecology Letters, 19(10), 1247–1255. https://doi.org/10.1111/ele.12659

Winfree, R., Gross, B. J., & Kremen, C. (2011). Valuing pollination services to agriculture. Ecological Economics, 71, 80–88. https://doi.org/10.1016/j.ecolecon.2011.08.001

Wrzesień, M., Jachuła, J., & Denisow, B. (2016). Railway embankments – Refuge areas for food flora, and pollinators in agricultural landscape. Journal of Apicultural Science, 60(1), 97–110. https://doi.org/10.1515/JAS-2016-0004

Xiao, Y., Li, X., Cao, Y., & Dong, M. (2016). The diverse effects of habitat fragmentation on plant–pollinator interactions. Plant Ecology, 217(7), 857–868. https://doi.org/10.1007/s11258-016-0608-7

Zhao, G., Li, J., Di, N., & Liu, F. (2014). Nectar phenolics drive cross visits between dimorphic flowers by honey bees. Journal of Apicultural Research, 53(4), 489–492. https://doi.org/10.3896/IBRA.1.53.4.14




DOI: https://doi.org/10.5586/aa.7410

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society