Impact of road transport on soil physicochemical characteristics and heavy metal concentrations in the bark of purple willow (Salix purpurea L.)

Piotr Sugier, Danuta Sugier

Abstract


The aim of this study was to determine the impact of road transport on soil physicochemical characteristics and concentration of heavy metals in the bark of purple willow. The study was carried out at two groups of sites situated along a national road at a distance of 5–10 m and ca. 100 m from the road. At each of the sites, annual willow shoots were cut and surface soil samples were taken. The concentrations of Zn, Pb, and Cd in bark samples were measured and of K, Ca, Mg, Zn, Cr, Cu, Ni, Mn, Pb, and Cd in the soil. The concentrations of Mn and Pb were predictably higher in soils located near the road, which may indicate an impact of road transport on the soil content of these metals. The concentrations of Zn, Pb, and Cd in S. purpurea bark from the sites located at distances of 5–10 m and ca. 100 m from the road were similar. However, the Cd concentration in the bark exceeded the maximum permissible concentration in the dried material, despite the low Cd concentrations in the soils at of all the sampling sites. It is important to pay due attention to the concentrations of this heavy metal in this plant material when it is intended for pharmaceutical use, even in that obtained from plants growing on soils qualifying as “uncontaminated”. Salix purpurea used for Salicis cortex should therefore be cultivated under controlled conditions.

Keywords


purple willow; bark; road transport; contaminants; heavy metals; Zn; Pb; Cd

Full Text:

PDF

References


Julkunen-Tiitto R. A chemotaxonomic survey of phenolics in leaves of northern Salicaceae species. Phytochemistry. 1986;25:663–667. https://doi.org/10.1016/0031-9422(86)88020-7

Julkunen-Tiitto R. Phenolic constituents of Salix: a chemotaxonomic survey of further Finnish species. Phytochemistry. 1989;28:2115–2125. https://doi.org/10.1016/S0031-9422(00)97930-5

Julkunen-Tiitto R, Virjamo V. Biosynthesis and roles of Salicaceae salicylates. In: Arimura G, Maffei M, editors. Plant specialized metabolism: genomics, biochemistry, and biological functions. Boca Raton, FL: CRC Press; 2017. p. 65–83.

Paunonen R, Julkunen-Tiitto R, Tegelberg R, Rousi M, Heiska S. Salicylate and biomass yield, and leaf phenolics of dark-leaved willow (Salix myrsinifolia Salisb.) clones under different cultivation methods after the second cultivation cycle. Ind Crops Prod. 2009;29:261–268. https://doi.org/10.1016/j.indcrop.2008.05.009

Förster N, Ulrichs C, Zander M, Kätzel R. Factors influencing the variability of antioxidative phenolic glycosides in Salix species. J Agric Food Chem. 2010;58:8205–8210. https://doi.org/10.1021/jf100887v

Krauze-Baranowska M, Pobłocka-Olech L, Głód D, Wiwart M, Zieliński J, Migas P. HPLC of flavanones and chalcones in different species and clones of Salix. Acta Pol Pharm. 2012;70:27–34.

Pobłocka-Olech L, van Nederkassel AM, Vander Heyden Y, Krauze-Baranowska M, Głód D, Baczek T. Chromatographic analysis of salicylic compounds in different species of the genus Salix. J Sep Sci. 2007;30:2958–2966. https://doi.org/10.1002/jssc.200700137

Sugier D, Sugier P. Evaluation of three Salix species growing in natural state as a source of pharmaceutical raw material (Salicis cortex). Herba Polonica. 2007;53:319–324.

Sugier D, Sugier P. Phenolic glycosides content in purple willow bark originated from natural habitats. Herba Polonica. 2007;53:325–330.

Sugier D, Sugier P, Pawełek M, Gawlik-Dziki U. Salix myrsinifolia Salisb. as a source of phenolic glycosides: distribution and habitat conditions in the mid-eastern Poland. Acta Scientiarum Polonorum, Hortorum Cultus. 2011;10:75–88.

Sugier D, Sugier P, Banaś A, Szewczuk C. The difference between the content of phenolic glycosides and macroelements (K, Ca, Mg) in the bark of herbal willows. Acta Scientiarum Polonorum, Hortorum Cultus. 2011;12:31–41.

Chrubasik S, Künzel O, Model A, Conradt C, Black A. Treatment of low back pain with a herbal or synthetic anti-rheumatic, a randomized controlled study. Willow bark extract for low back pain. Rheumatology. 2000;40:1388–1393. https://doi.org/10.1093/rheumatology/40.12.1388

Vlachojannis J, Magora F, Chrubasik S. Willow species and aspirin: different mechanism of actions. Phytother Res. 2011;25:1102–1104. https://doi.org/10.1002/ptr.3386

Gawlik-Dziki U, Świeca M, Sugier D. Enhancement of antioxidant abilities and the lipoxygenase and xanthine oxidase inhibitory activity of broccoli sprouts by biotic elicitors. Acta Scientiarum Polonorum, Hortorum Cultus. 2012;11:13–25.

Gawlik-Dziki U, Sugier D, Dziki D, Sugier P. Bioaccessibility in vitro of nutraceuticals from bark of selected Salix species. The Scientific World Journal. 2014;2014:782763. https://doi.org/10.1155/2014/782763

Meers E, Vervaeke P, Tack FMG, Lust N, Verloo M, Lesage E. Field trial experiment: phytoremediation with Salix sp. on a dredged sediment disposal site in Flanders, Belgium. Remediation. 2003;13:87–97. https://doi.org/10.1002/rem.10077

Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG. Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot. 2007;60:57–68. https://doi.org/10.1016/j.envexpbot.2006.06.008

Landberg T, Greger M. Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Appl Geochem. 1996;11:175–180. https://doi.org/10.1080/15226519908500010

Lunácková L, Masarovicová E, Král’ová K, Stresko V. Response of fast growing woody plants from family Salicaceae to cadmium treatment. Bull Environ Contam Toxicol. 2003;70:576–585. https://doi.org/10.1007/s00128-003-0024-2

Rosselli W, Keller C, Boschi K. Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil. 2003;256:265–272. https://doi.org/10.1023/A:1026100707797

Pulford ID, Riddell-Black D, Stewart C. Heavy metal uptake by willow clones from sewage sludge treated soil: the potential for phytoremediation. Int J Phytoremediation. 2002;4:59–72. https://doi.org/10.1080/15226510208500073

Pulford ID, Watson C. Phytoremediation of heavy metal contaminated land by trees – a review. Environ Int. 2003;29:529–540. https://doi.org/10.1016/S0160-4120(02)00152-6

Tlustoš P, Száková J, Vyslouzilová M, Pavliková D, Weger J, Javorská H. Variation in the uptake of arsenic, cadmium, lead, and zinc by different species of willows Salix spp. grown in contaminated soils. Cent Eur J Biol. 2007;2:254–275. https://doi.org/10.2478/s11535-007-0012-3

Czarnowska K, Milewska A. The content of heavy metals in an indicator plant (Taraxacum officinale) in Warsaw. Pol J Environ Stud. 2000;9:125–128.

Kajka K, Rutkowska B. Accumulation of selected heavy metals in soils and common dandelion (Taraxacum officinale) near a road with high traffic intensity. Soil Science Annual. 2018;69:11–16. https://doi.org/10.2478/ssa-2018-0002

Mazur K, Gondek K, Filipek-Mazur B. Heavy metal contents in soils and plants from areas localized along the No. 4 road within the boundaries of the county of Ropczyce-Sędziszów. Part 1. Physico-chemical properties of silos and total heavy metal content. Chemia i Inżynieria Ekologiczna. 2007;14:487–496.

Jankowska J, Sosnowski J, Kolczarek R, Deska J. Lead and cadmium content in some grasses along expressway areas. J Elem. 2014;19:119–128. https://doi.org/10.5601/jelem.2014.19.1.591

Kabata-Pendias A, Pendias H. Biogeochemia pierwiastków śladowych. 2nd ed. Warszawa: Wydawnictwo Naukowe PWN; 1999.

Ociepa-Kubicka A. Ociepa E. Toksyczne oddziaływanie metali ciężkich na rośliny, zwierzęta i ludzi. Inżynieria i Ochrona Środowiska. 2012;15:169–180.

Czubaszek R, Bartoszuk K. Zawartość wybranych metali ciężkich w glebach w zależności od ich odległości od ulicy i sposobu użytkowania terenu. Civil and Environmental Engineering. 2011;2:27–34.

Modrzewska B, Wyszkowski M. Trace metals content in soils along the state road 51 (northeastern Poland). Environ Monit Assess. 2014;186:2589–2597. https://doi.org/10.1007/s10661-013-3562-z

Modrzewska B, Wyszkowski M. Content of selected trace elements in soils along state road 51 (north-eastern Poland). Polish Journal of Natural Sciences. 2015;30:103–112.

Szydłowski K, Mielczarek M, Podlasińska J. Zanieczyszczenie wybranymi metalami ciężkimi gleb przyległych do obwodnic Stargardu (S10) oraz Nowogardu (S6). Inżynieria Ekologic-zna. 2017;18:253–260. https://doi.org/10.12912/23920629/68515

Kowol J, Kwapuliński J, Nogaj E, Babuśka-Roczniak M, Brodziak-Dopierała B, Roczniak W, et al. Assessment of phytotherapeutic mixtures as a potential route of absorption of some metal compounds. Journal of Pre-Clinical and Clinical Research 2016;10:115–121. https://doi.org/10.5604/18982395.1227568

Kwapuliński J, Michalewska A, Rochel R, Kowol J. Intoksykacja surowców roślin leczniczych metalami ciężkimi w świetle obowiązujących uregulowań ustawodawczych oraz zaleceń WHO. Problemy Ekologii. 2005;9:202–204. https://doi.org/10.15199/17.2017.12.5

Mirosławski J, Wiechuła D, Kwapuliński J, Rochel R, Loska K, Ciba J. Występowanie Pb, Cd, Mn, Ni, Co, Cr w wybranych gatunkach roślin leczniczych na terenie Polski. Bromatologia i Chemia Toksykologiczna. 1995;28:363–368. https://doi.org/10.5604/18982395.1227568

Rochel R, Kwapuliński J, Kowol J, Bogunia M. Migration of bioavailable chemical forms of chromium from soil to medicinal plants. Fresenius Environmental Bulletin. 2009;18:1963–1966.

Ligocki M, Tarasewicz Z, Zygmunt A, Aniśko M. The common dandelion (Taraxacum officinale) as an indicator of anthropogenic toxic metal pollution of environment. Acta Scientiarum Poloronorum, Zootechnica. 2011;10:73–82.

Błoniarz J, Zaręba S, Ranhama M. Zawartość kadmu i ołowiu w ziołach, preparatach ziołowych oraz naparach wykonanych z tych ziół stosowanych u dzieci i dorosłych. Przegl Lek. 2001;58:9–43.

Michalewska A, Kwapuliński J, Rochel R, Kowol J. Rola transporterów metali ciężkich w intoksykacji roślinnych surowców leczniczych. Herba Polonica. 2004;50:111–119.

Sulima P, Przyborowski JA, Wiwart M. Willow bark – herbal raw material harvested from arable lands. Herba Polonica. 2006;54:18–25.

Sulima P, Krauze-Baranowska M, Przyborowski JA. Variations in the chemical composition and content of salicylic glycosides in the bark of Salix purpurea from natural locations and their significance for breeding. Filoterapia. 2017;118:118–125. https://doi.org/10.1016/j.fitote.2017.03.005

Szczukowski S, Tworkowski J, Sulima P. Kora wierzb krzewiastych źródłem glikozydów salicylowych. Wiadomości Zielarskie. 2002;1:6–7.

Sugier D, Sugier P. Characteristics of abiotic conditions and heavy metals concentration in bark of the pharmaceutical willow Salix purpurea L. in the Łęczna-Włodawa Lakeland. Teka Komisji Ochrony i Kształtowania Środowiska Przyrodniczego. 2010;7:400–409.

Jongman RHG, ter Braak CJF, van Tongeren DFR. Data analysis in community and landscape ecology. Wageningen: Pudoc; 1987.

StatSoft. Elektroniczny podręcznik statystyki PL [Internet]. 2006 [cited 2018 Aug 24]. Available from: http://www.statsoft.pl/textbook/stathome.html

Kovach WL. MVSP – a multivariate statistical package for Windows ver. 3.1. Pentraeth: Kovach Computing Service; 1999.

Pacyna JM, Pacyna EG, Aas W. Changes of emissions and atmospheric deposition of mercury, lead, and cadmium. Atmos Environ. 2009;43:117–127. https://doi.org/10.1016/j.atmosenv.2008.09.066

Nriagu JO. The rise and fall of leaded gasoline. Sci Total Environ. 1990;92:13–28. https://doi.org/10.1016/0048-9697(90)90318-O

Weiss D, Shotyk W, Appleby PG, Kramers JD, Cheburkin AK. Atmospheric Pb deposition since the industrial revolution recorded by five Swiss peat profiles: enrichment factors, fluxes, isotopic composition, and sources. Environ Sci Technol. 1999;33:1340–1352. https://doi.org/10.1021/es980882q

Lytle CM, McKinnon CZ, Smith BN. Manganese accumulation in roadside soil and plants. Naturwissenschaften. 1994;81:509–510. https://doi.org/10.1007/BF01132685

Rozporządzenie Ministra Środowiska z dnia 1 września 2016 r. w sprawie sposobu prowadzenia oceny zanieczyszczenia powierzchni ziemi. Journal of Laws of the Republic of Poland (Dziennik Ustaw). 2016 Sep 6, Item 1395.

Smoleń S, Sady W. The content of Cd, Cu and Zn in carrot storage roots as related to differentiated nitrogen fertilization and foliar nutrition. Pol J Environ Stud. 2006;15(2A):503–509.

Smoleń S, Sady W. The effect of fertilizer nitrogen form and foliar feeding on Cd, Cu and Zn concentrations in carrot. Folia Horticulturae. 2007;19:87–96.

Jarosz W, Nowińska Z. Zawartość metali ciężkich w nawozach mineralnych i wapnie odpadowym. Postępy Nauk Rolniczych. 1992;4:39–43.

Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PEB, Williams DJ, et al. A global perspective on cadmium pollution an toxicity in non-occuptionally exposed population. Toxicol Lett. 2003;137:65–83. https://doi.org/10.1016/S0378-4274(02)00381-8

Vasudevan DT, Dinesh KR, Gopalakrishnan S. Occurrence of high concentrations of cadmium, mercury and lead in medicinal plants of India. Pharmacogn Mag. 2009;5(2A suppl):15–28.

Szczepocka A. Kryteria oceny zanieczyszczeń gleb metalami ciężkimi. Zeszyty Naukowe Szkoły Głównej Służby Pożarniczej. 2005;32:13–27.

Kabata-Pendias A, Mukherjee AB. Trace elements from soil to human. Berlin: Springer; 2007. https://doi.org/10.1007/978-3-540-32714–1

Rozporządzenie Ministra Zdrowia z dnia 13 stycznia 2003 r. w sprawie maksymalnych poziomów zanieczyszczeń chemicznych i biologicznych, które mogą znajdować się w żywności, składnikach żywności, dozwolonych substancjach dodatkowych, substancjach pomagających w przetwarzaniu albo na powierzchni żywności. Journal of Laws of the Republic of Poland (Dziennik Ustaw). 2003 No. 37, Item 326.

Fischer A, Brodziak-Dopierała B, Steuer M, Rajczykowski K, Kowol J. Zawartość kadmu w roślinach przyprawowych dostępnych na rynku i uprawianych indywidualnie. Medycyna Środowiskowa. 2017;20:27–33. https://doi.org/10.19243/2017103

Laskowska A, Wiechuła D. Accumulation of lead and zinc in chosen medicinal plants from Katowice recreation area. Environmental Protection and Natural Resources. 2015;26:11–15.

Nissen LR, Lepp NW. Baseline concentrations of copper and zinc in shoot tissues of a range of Salix species. Biomass Bioenergy. 1997;12:115–120. https://doi.org/10.1016/S0961-9534(96)00065-7




DOI: https://doi.org/10.5586/aa.1753

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society