The impact of humic acid fractions on swelling and germination of ‘Progres’ and ‘Nawiko’ soybean seeds under salt and water deficit stresses

Andrzej Gawlik, Dorota Gołębiowska, Danuta Kulpa, Romualda Bejger, Renata Matuszak-Slamani, Mariola Sienkiewicz, Małgorzata Włodarczyk

Abstract


A laboratory research was carried out to examine the impact of humic acids (HA) on swelling and germination of ‘Nawiko’ and ‘Progres’ soybean seeds under salt stress (50 mM dm−3 NaCl) and water deficit stress (−0.5 MPa) induced by polyethylene glycol (PEG) 6000. HA in the form of a dry preparation was obtained from peat using the IHSS method. Tests on swelling and germination used non-fractionate preparation (NFHA) and two of its molecular fractions obtained using Millipore filters with a 30 kDa cut-off point. This enabled us to obtain two fractions: with a higher molecular weight, above 30 kDa (HMHA), and a lower molecular weight, below 30 kDa (LMHA). The carbon concentration in HA solutions, used in all tests, was 0.005 g CHA dm−3. The results showed that HA mitigate the negative impact of salinity and water deficit on swelling and germination of soybean seeds.

Keywords


humic acids; stress factors; NaCl; PEG 6000; soybean seeds

Full Text:

PDF

References


Furczak J. Aktywność biochemiczna gleby płowej pod soją uprawianą w różnych syste­mach. Acta Agrophysica. 2006;8(4):815–824.

Bujak K, Frant M. Wpływ mieszanek herbicydów na plonowanie i zachwaszczenie pięciu odmian soi. Acta Agrophysica. 2009;13(3):601–613.

Šařec O, Šařec P, Dobek T. Uprawa i zbiór soi. Inżynieria Rolnicza. 2006;4(79):255–261.

Bouslama M, Schapaugh WT. Stress tolerance in soybean. I. Evaluation of three screening techniques for heat and drought tolerance. Crop Sci. 1984;24(5):933–937. http://dx.doi.org/10.2135/cropsci1984.0011183X002400050026x

Brown EA, Caviness CE, Brown DA. Response of selected soybean cultivars to soil moisture deficit. Agron J. 1985;77:274–278. http://dx.doi.org/10.2134/agronj1985.00021962007700020022x

Kpoghomou BK, Sapra VT, Beyl CA. Screening for drought tolerance: soybean germination and its relationship to seedling responses. Journal of Agronomy and Crop Science. 1990;164:153–159. http://dx.doi.org/10.1111/j.1439-037X.1990.tb00801.x

Grzesiak S, Filek W, Pienkowski S, Nizioł B. Screening for drought resistance: evaluation of drought susceptibility index of legume plants under natural growth conditions. Journal of Agronomy and Crop Science. 1996;177:237–244. http://dx.doi.org/10.1111/j.1439-037X.1996.tb00241.x

Helms TC, Deckard E, Goos RJ, Enz JW. Soybean seedling emergence influenced by days of soil water stress and soil temperature. Agron J. 1996;88:657–661. http://dx.doi.org/10.2134/agronj1996.00021962008800040026x

Khan MA, Gul B, Weber DJ. Seed germination in relation to salinity and temperature in Sarcobatus vermiculatus. Biol Plant. 2002;45(1):133–135. http://dx.doi.org/10.1023/A:1015133515568

Khan MA, Gul B. Halophyte seed germination. In: Khan MA, Weber DJ, editors. Ecophysiology of high salinity tolerant plants. Dordrecht: Springer; 2008. p. 11–30.

Song J, Fan H, Zhao Y, Jia Y, Du X, Wang B. Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland. Aquat Bot. 2008;88:331–337. http://dx.doi.org/10.1016/j.aquabot.2007.11.004

Kaydan D, Yagmur M. Germination, seedling growth and relative water content of shoot in different seed sizes of triticale under osmotic stress of water and NaCl. Afr J Biotechnol. 2008;7:2862–2868.

Kaya MD, Ipek A, Öztürk A. Effects of different soil salinity levels on germination and seedling growth of safflower (Carthamus tinctorius L.). Turk J Agric For. 2003;27:221–227.

Park JH, Jeong HJ, de Lumen BO. Contents and bioactivities of lunasin, bowman-birk inhibitor and isoflavones in soybean seed. J Agric Food Chem. 2005;53:7686–7690. http://dx.doi.org/10.1021/jf0506481

Schiavon M, Pizzeghello D, Muscolo A, Vaccaro S, Francioso O, Nardi S. High molecular size hymic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J Chem Ecol. 2010;36:662–669. http://dx.doi.org/10.1007/s10886-010-9790-6

Garcia AC, Santos LA, Izquierdo FG, Rumjanek VM, Castro RN, dos Santos FS, et al. Potentialities of vermicompost humic acids to alleviate water stress in rice plants (Oryza satiya L.). J Geochem Explor. 2014;136:48–54. http://dx.doi.org/10.1016/j.gexplo.2013.10.005

Trevisan S, Pizzeghello D, Ruperti B, Francioso O, Sassi A, Palme K, et al. Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biol. 2010;12(4):604–614. http://dx.doi.org/10.1111/j.1438-8677.2009.00248.x

Lewak S, Kopcewicz J. Fizjologia roślin. Wprowadzenie. Warszawa: Wydawnictwo Nauko­we PWN; 2009.

Swift RS. Organic matter characterization. In: Sparks DL, editor. Methods of soil analysis. Part 3. Chemical methods. Madison, WI: Soil Science Society of America, American Society of Agronomy; 1996. p. 1018–1020. [Soil Science Society of America book series; vol 5(3)].

Kumada K. Chemistry of soil organic matter. Tokyo: Japan Scientific Societies Press; 1987.

Lewak S. Regulacja procesów fizjologicznych przez czynniki endogenne. In: Kopcewicz J, Lewak S, editors. Fizjologia roślin. Warszawa: Wydawnictwo Naukowe PWN; 2002. p. 137–161.

Grzesiuk S. Fizjologia i biochemia nasion. Warszawa: Państwowe Wydawnictwo Rolnicze i Leśne; 1981.

Vaughan D, Malcom RE. Influence of humic substances on growth and physiological processes. In: Vaughan D, Malcolm RE, editors. Soil organic matter and biological activity. Dordrecht: Martinus Nijhoff / Junk W; 1985. p. 37–76. (Developments in Plant and Soil Sciences; vol 16). http://dx.doi.org/10.1007/978-94-009-5105-1_2

Chen Y, Aviad T. Effects of humic substances on plant growth. In: MacCarthy P, Clapp CE, Malcom RL, Bloom PR, editors. Humic substances in soil and crop science: selected readings. Madison, WI: American Society of Agronomy, Soil Science Society of America; 1990. p. 161–187.

Muscolo A, Sidari M, Francioso O, Tugnoli V, Nardi S. The auxin-like activity of humic substances is related to membrane interactions in carrot cell cultures. J Chem Ecol. 2007;33:115–129. http://dx.doi.org/10.1007/s10886-006-9206-9

Radhakrishnan R, Lee IJ. Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. J Plant Growth Regul. 2013;32:22–30. http://dx.doi.org/10.1007/s00344-012-9274-8

Russell L, Stokes AR, Macdonald H, Muscolo A, Nardi S. Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A2. Plant Soil. 2006;283:175–185. http://dx.doi.org/10.1007/s11104-006-0011-6

Young CC, Chen LF. Polyamines in humic acid and their effect on radical growth of lettuce seedlings. Plant Soil. 1997;195:143–149. http://dx.doi.org/10.1023/A:1004247302388

Michałek S, Borowski E. Kiełkowanie nasion i wzrost siewek krajowych odmian soi [Glycine max (L.) Merr.] w warunkach suszy. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin; 2002;223–224:195–201.




DOI: https://doi.org/10.5586/aa.1672

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society