Role of some rhizospheric Pseudomonas on the growth and physiology of broad bean (Vicia faba) under salt stress conditions
Abstract
Keywords
Full Text:
PDFReferences
Food and Agriculture Organization of The United Nations FAO. Crops and drops: making the best use of water for agriculture [Internet]. 2002 [cited 2002]. Available from: http://www.fao.org/3/Y3918E/y3918e00.htm
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Grattan SR, Grieve CM. Salinity–mineral nutrient relations in horticultural crops. Sci Hortic. 1999;78:127–157. https://doi.org/10.1016/S0304-4238(98)00192-7
Kohler J, Hernández JA, Caravaca F, Roldán A. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot. 2009;65:245–252. https://doi.org/10.1016/j.envexpbot.2008.09.008
Cenk KC, Yasemin SK, Dilek A. Performance of purslane (Portulaca oleracea L.) as a salt-removing crop. Agric Water Manag. 2008;95(7):854–858. https://doi.org/10.1016/j.agwat.2008.01.019
Parida AK, Das AB. Salt tolerance and salinity effect on plants. Ecotoxicol Environ Saf. 2005;60:324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010
Lee G, Carrow RN, Duncan RR, Eiteman MA, Rieger MW. Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environ Exp Bot. 2008;63:19–27. https://doi.org/10.1016/j.envexpbot.2007.10.009
Lugtenberg B, Kamilova F. Plant growth-promoting rhizobacteria. Annu Rev Microbiol. 2009;63:541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918
Wani PA, Khan MS, Zaidi A. Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth symbiosis, seed yield and metal uptake by greengram plants. Chemosphere. 2007;70:36–45. https://doi.org/10.1016/j.chemosphere.2007.07.028
Idder B, Djibaoui R, Reguieg Yassaad El Hocine A, Djoudi A. Effects of inoculation with rhizospheric Pseudomonas on physiological responses in the broad bean (Vicia faba) grown under copper stress. In: Chenchouni H, Errami E, Rocha F, Sabato L, editors. Exploring the nexus of geoecology, geography, geoarcheology and geotourism: advances and applications for sustainable development in environmental sciences and agroforestry research. Cham: Springer; 2018. p. 65–68. (Advances in Science, Technology & Innovation). https://doi.org/10.1007/978-3-030-01683-8_14
Rajkumar M, Treitas H. Sequential extraction of copper, lead, cadmium and zinc in sediments from Ebro River (Spain): relationship with levels detected in earthworms. Bull Environ Contam Toxicol. 2008;62:301–308. https://doi.org/10.1007/s001289900874
Mayak S, Tirosh T, Glick BR. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 2004;166:525–530. https://doi.org/10.1016/j.plantsci.2003.10.025
Kohler J, Caravaca F, Carrasco L, Roldan A. Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological properties in rhizosphere soil of lettuce plants under field conditions. Soil Use Manag. 2006;22:298–304. https://doi.org/10.1111/j.1475-2743.2006.00041.x
Zahir AZ, Arshad M, Frankenberger WT. Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Advances in Agronomy. 2004;81:97–168. https://doi.org/10.1016/S0065-2113(03)81003-9
Berg G. Plant microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Annu Rev Plant Biol. 2009;84:11–18. https://doi.org/10.1007/s00253-009-2092-7
Yao L, Wu Z, Zheng Y, Kaleem I, Li C. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol. 2010;46:49–54. https://doi.org/10.1016/j.ejsobi.2009.11.002
Berg G, Krechel A, Ditz M, Faupel A, Ulrich A, Hallmann J. Comparison of endophytic and ectophytic potato-associated bacterial communities and their antagonistic activity against plant pathogenic fungi. FEMS Microbiol Ecol. 2005;51:215–229. https://doi.org/10.1016/j.femsec.2004.08.006
Egamberdieva D, Kucharova Z. Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fertil Soils. 2009;45:563–571. https://doi.org/10.1007/s00374-009-0366-y
Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, et al. Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils. 2010;47:197–205. https://doi.org/10.1007/s00374-010-0523-3
Vidhyasekaran P, Rabindran R, Muthamilan M, Nayar K, Rajappan K, Subramanian N, et al. Development of powder formulation of Pseudomonas fluorescens for control of rice blast. Plant Pathol. 1997;46:291–297. https://doi.org/10.1046/j.1365-3059.1997.d01-27.x
Tamietti G, Pramotton R. La réceptivité des sols aux fusarioses vasculaires: rapports entre résistance et microflore aotuchtone avec référence particulière aux Fusarium non pathogènes. Agron Sustain Dev. 1990;10:69–76. https://doi.org/10.1051/agro:19900109
King EO, Ward M, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med. 1954;44:301–307.
Meyer JM, Abdallah MA. The florescent pigment of Pseudomonas fluorescens biosynthesis, purification and physical-chemical properties. Microbiology. 1987;107:319–328. https://doi.org/10.1099/00221287-107-2-319
Loper JE, Schroth MN. Influence of bacterial sources of indole-2-acetic acid on root elongation of sugar beet. Phytopathology. 1986;76:386–389. https://doi.org/10.1094/Phyto-76-386
Hoagland D, Arnon Di. The water culture method for growing plants soil. Univer Calif AES cir. 1938;347:1–36.
Francis GW, Hertzberg S, Andersen K, Liaaen-Jensen S. New carotenoid glycosides from Oscillatoria limosa. Phytochemistry. 1970;9:629–635. https://doi.org/10.1016/S0031-9422(00)85703-9
Bergman I, Loxley R. New spectrophotometric method for the determination of proline in tissue hydrolysates. Anal Chem. 1970;42(7):702–706. https://doi.org/10.1021/ac60289a036
Lagerkvist BJ, Ekesrydh S, Englyst V, Norberg GF, Soderberg HA, Wiklund DE. Increased blood lead and decreased calcium levels during pregnancy: a prospective study of Swedish women living near a smelter. Am J Public Health. 1996;86(9):1247–1252. https://doi.org/10.2105/ajph.86.9.1247
Mayak S, Tirosh T, Glick BR. Plant growth promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem. 2004;42:565–572. https://doi.org/10.1016/j.plaphy.2004.05.009
Abdel Latef AA. Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Res Commun. 2010;38:43–55. https://doi.org/10.1556/CRC.38.2010.1.5
Wilkinson JQ, Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ. An ethylene inducible component of signal transduction encoded by never-ripe. Science. 1995;270:1807–1809. https://doi.org/10.1126/science.270.5243.1807
O’Donell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ. Ethylene as a signal mediating the wound response of tomato plants. Science. 1996; 274:1914–1917. https://doi.org/10.1126/science.274.5294.1914
Feng J, Barker AV. Ethylene evolution and ammonium accumulation by tomato plants under water and salinity stresses. Part II. J Plant Nutr. 1992;15:2471–2490. https://doi.org/10.1080/01904169209364488
Smalle J, van der Straeten D. Ethylene and vegetative development. Physiol Plant. 1997;100:593–605. https://doi.org/10.1111/j.1399-3054.1997.tb03065.x
Jusaitis M. Rooting of intact mung bean hypocotyls stimulated by auxin, ACC and low temperature. HortScience. 1986;21:1024–1025.
Penrose DM, Glick BR. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant. 2003;118:10–15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
Glick BR. The enhancement of plant-growth by free-living bacteria. Can J Microbiol. 1995;41:109–117. https://doi.org/10.1139/m95-015
Glick BR, Penrose DM, Li J. A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol. 1998;190:63–68. https://doi.org/10.1006/jtbi.1997.0532
Jacobson CB, Pasternak JJ, Glick BR. Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol. 1994;40:1019–1025. https://doi.org/10.1139/m94-162
Hasnain S, Sabri AN. Growth stimulation of Triticum aestivum seedlings under Cr-stresses by non-rhizospheric Pseudomonas strains. Environ Pollut. 1997;3:265–273. https://doi.org/10.1016/S0269-7491(97)00087-0
Glick BR, Liu C, Ghosh S, Dumbrof EB. Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol Biochem. 1997;29:1233–1239. https://doi.org/10.1016/S0038-0717(97)00026-6
Yildirim E, Taylor AG. Effect of biological treatments on growth of bean plants under salt stress. Reports of Bean Improvement Cooperative and National Dry Bean Council Research Conference. 2005;48:176 –177.
Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT. Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic. 2006;109:8–14. https://doi.org/10.1016/j.scienta.2006.02.025
Yao L, Wu Z, Zheng YY, Kaleem I, Li C. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol. 2009;46(1):49–54. https://doi.org/10.1016/j.ejsobi.2009.11.002
Zheng YY, Yue HT, Li C. Physiochemical characters and ability to promote cotton germination of bacteria strains Rs-5 and Rs-198 under salt stress. Scientia Agricultura Sinica. 2008;41:1326–1332.
Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol. 2002;68:3795–3801. https://doi.org/10.1128/aem.68.8.3795-3801.2002
Singleton PW, Bohlool BB. Effect of salinity on nodule formation by soybean. Plant Physiol. 1984;74:72–76. https://doi.org/10.1104/pp.74.1.72
Rabie GH, Aboul-Nasr MB, Al-Humiany A. Increase salinity tolerance of cowpea plants by dual inoculation of AM fungus Glomus clarum and nitrogen-fixer Azospirillum brasilense. Mycobiology. 2005;33(1):51–61. https://doi.org/10.4489/MYCO.2005.33.1.051
Egamberdieva D, Berg G, Lindström K, Räsänen LA. Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas. Plant Soil. 2013;369:453–465. https://doi.org/10.1007/s11104-013-1586-3
Srivastava TP, Gupta SC, Lal P, Muralia PN, Kumar A. Effect of salt stress on physiological and biochemical parameters of wheat. Ann Arid Zone. 1988;27:197–204.
Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza. 2008;18:287–296. https://doi.org/10.1007/s00572-008-0180-7
Murkute AA, Sharma S, Singh SK. Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hortic Sci. 2006;33:70–76. https://doi.org/10.17221/3742-hortsci
Murkute AA, Sharma S, Singh SK, Patel VB. Response of mycorrhizal citrus rootstock plantlets to salt stress. Indian J Hortic. 2009;66:456–60.
Giri B, Mukerji KG. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza. 2004;14:307–12. https://doi.org/10.1007/s00572-003-0274-1
Han HS, Lee KD. Physiological responses of soybean inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Research Journal of Agricultural and Biological Sciences. 2005;1:216–221.
Heidari M, Golpayegani A. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences. 2012;11:57–61. https://doi.org/10.1016/j.jssas.2011.09.001
Stefan M, Munteanu N, Stoleru V, Mihasan M, Hritcu L. Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Sci Hortic. 2012;151:22–29. https://doi.org/10.1016/j.scienta.2012.12.006
Thiam M, Champion A, Diouf D, SY MO. NaCl Effects on in vitro germination and growth of some Senegalese cowpea [Vigna unguiculata (L.) Walp.] cultivars. Int Sch Res Notices. 2013;2013:382417. https://doi.org/10.5402/2013/382417
Ahanger MA, Alyemeni MN, Wijaya L, Alamri SA, Alam P, Ashraf M, et al. Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate–glutathione cycle and glyoxalase system. PLoS One. 2018;13(9):e0202175. https://doi.org/10.1371/journal.pone.0202175
Alia KV, Prasad SK, Saradhi PP. Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry. 1995;39:45–47. https://doi.org/10.1016/0031-9422(94)00919-K
Hoque MA, Hoque MM, Ahmed M. Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: causes and quantification. Hydrogeol J. 2007;15:1523–1534. https://doi.org/10.1007/s10040-007-0226-5
Peng YL, Gao ZW, Gao Y, Liu GF, Sheng LX, Wang DL. Ecophysiological characteristics of alfalfa seedlings in response to various mixed salt–alkaline stresses. J Integr Plant Biol. 2008;50(1):29–39. https://doi.org/10.1111/j.1744-7909.2007.00607.x
Belkhodja M, Benkablia M. Proline response of faba bean (Vicia faba L.) under salt stress. Egyptian Journal of Agricultural Research. 2000;78(1):185195.
Yang CW, Xu HH, Wang LL, Liu J, Shi DC, Wang GD. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica. 2009;47(1):79–86. https://doi.org/10.1007/s11099-009-0013-8
Zarea MJ, Hajinia S, Karimi N, Mohammadi Goltapeh E, Rejali F, Varma A. Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol Biochem. 2012;45:139–146. https://doi.org/10.1016/j.soilbio.2011.11.006
Bashan Y, Holguin G. Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol. 1997;43:103–121. https://doi.org/10.1139/m97-015
Tripathi AK, Mishra BM, Tripathi P. Salinity stress response in the plant growth promoting rhizobacteria, Azospirillum spp. J Biosci. 1998;23(4):463–471. https://doi.org/10.1007/BF02936140
Creus CM, Sueldo RJ, Barassi CA. Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem. 1997;35:939–944.
Casanovas EM, Barassi CA, Andrade FH, Sueldo RJ. Azospirillum-inoculated maize plant responses to irrigation restraints imposed during flowering. Cereal Res Commun. 2003;31:395–402.
Fu Q, Liu C, Ding N, Lin Y, Guo B. Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agric Water Manag. 2010;97:1994–2000. https://doi.org/10.1016/j.agwat.2010.02.003
Sivritepe N, Sivritepe HO, Eris A. The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Sci Hortic. 2003;97:229–237. https://doi.org/10.1016/S0304-4238(02)00198-X
Ahmad P, Ahanger MA, Alam P, Alyemeni MN, Wijaya L, Ali S, et al. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) wilczek] through the modifications of physiobiochemical attributes and key antioxidant enzymes. J Plant Growth Regul. 2018;38(1):70–82. https://doi.org/10.1007/s00344-018-9810-2
Ahanger MA, Agarwal RM. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol Biochem. 2017;115:449–460. https://doi.org/10.1016/j.plaphy.2017.04.017
Fortmeier R, Schubert S. Salt tolerance of maize (Zea mays L.): the role of sodium exclusion. Plant Cell Environ. 1995;18:1041–1047. https://doi.org/10.1111/j.1365-3040.1995.tb00615.x
Shabala S, Cuin TA. Potassium transport and plant salt tolerance. Physiol Plant. 2008;133:651–669. https://doi.org/10.1111/j.1399-3054.2007.01008.x
Ashraf M, Berge SH, Mahmood OT. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils. 2004;40:157–162. https://doi.org/10.1007/s00374-004-0766-y
Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact. 2008;21:737–744. https://doi.org/10.1094/MPMI-21-6-0737
Timmusk S, Wagner EGH. The plant growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression. Mol Plant Microbe Interact. 1999;12:951–959. https://doi.org/10.1094/MPMI.1999.12.11.951
Yang J, Kloepper JW, Ryu CM. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 2009;14:1–4. https://doi.org/10.1016/j.tplants.2008.10.004
Yue H, Mo W, Li C, Zheng Y, Li H. The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant Soil. 2007;297:139–145. https://doi.org/10.1007/s11104-007-9327-0
Upadhyay SK, Singh JS, Saxena AK, Singh DP. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol. 2012;4:605–611. https://doi.org/10.1111/j.1438-8677.2011.00533.x
DOI: https://doi.org/10.5586/aa.1794
|
|
|