Biolistics transformation of callus and cell suspension cultures of Capsicum annuum L. ‘Serrano’ is useful for in vitro studies of the relative contents of secondary metabolites
Abstract
Keywords
Full Text:
PDFReferences
Paran I, van der Knaap E. Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot. 2007;58(14):3841–3852. https://doi.org/10.1093/jxb/erm257
Wahyuni Y, Ballester A, Sudarmonowati E, Bino RJ, Bovy AG. Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: variation in health-related compounds and implications for breeding. Phytochemistry. 2011;72(11–12):1358–1370. https://doi.org/10.1016/j.phytochem.2011.03.016
Wahyuni Y, Ballester A, Sudarmonowati E, Bino RJ, Bovy AG. Secondary metabolites of Capsicum species and their importance in the human diet. J Nat Prod. 2013;76(4):783–793. https://doi.org/10.1021/np300898z
Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N. Chilli peppers – a review on tissue culture and transgenesis. Biotechnol Adv. 2010;28(1):35–48. https://doi.org/10.1016/j.biotechadv.2009.08.005
Gammoudi N, Pedro TS, Ferchichi A, Gisbert C. Improvement of regeneration in pepper: a recalcitrant species. In Vitro Cell Dev Biol Plant. 2018;54:145–153. https://doi.org/10.1007/s11627-017-9838-1
Barchenger DW, Lamour KH, Bosland PW. Challenges and strategies for breeding resistance in Capsicum annuum to the multifarious pathogen, Phytophthora capsici. Front Plant Sci. 2018;9:628. https://doi.org/10.3389/fpls.2018.00628
Kehie M, Kumaria S, Tandon P, Ramchiary N. Biotechnological advances on in vitro capsaicinoids biosynthesis in Capsicum: a review. Phytochem Rev. 2014;14(2):189–201. https://doi.org/10.1007/s11101-014-9344-6
Ochoa-Alejo N, Ireta-Moreno L. Cultivar differences in shoot-forming capacity of hypocotyl tissues of chilli pepper (Capsicum annuum L.) cultured in vitro. Sci Hortic (Amsterdam). 1990;42(1–2):21–28. https://doi.org/10.1016/0304-4238(90)90144-4
Cheng Y, Ma R, Jiao Y, Qiao N, Li T. Impact of genotype, plant growth regulators and activated charcoal on embryogenesis induction in microspore culture of pepper (Capsicum annuum L.). S Afr J Bot. 2013;88:306–309. https://doi.org/10.1016/j.sajb.2013.08.012
Heidmann I, de Lange B, Lambalk J, Angenent GC, Boutilier K. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep. 2011;30(6):1107–1115. https://doi.org/10.1007/s00299-011-1018-x
Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino JM, et al. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol. 2017;175:848–857. https://doi.org/10.1104/pp.17.00232
Gunay AL, Rao PS. In vitro plant regeneration from hypocotyl and cotyledon explants of red pepper (Capsicum). Plant Sci Lett. 1978;11(3–4):365–372. https://doi.org/10.1016/0304-4211(78)90024-X
Haque SM, Ghosh B. An improved micropropagation protocol for the recalcitrant plant Capsicum – a study with ten cultivars of Capsicum spp. (C. annuum, C. chinense, and C. frutescens) collected from diverse geographical regions of India and Mexico. J Hortic Sci Biotechnol. 2018;93(1):91–99. https://doi.org/10.1080/14620316.2017.1345331
Balázs E, Bukovinszki Á, Csányi M, Csilléry G, Divéki Z, Nagy I, et al. Evaluation of a wide range of pepper genotypes for regeneration and transformation with an Agrobacterium tumefaciens shooter strain. S Afr J Bot. 2008;74(4):720–725. https://doi.org/10.1016/j.sajb.2008.05.005
Liu J, Yu Y, Lei J, Chen G, Cao B. Study on Agrobacterium-mediated transformation of pepper with Barnase and Cre gene. Agric Sci China. 2009;8(8):947–955. https://doi.org/10.1016/S1671-2927(08)60299-0
Ko MK, Soh H, Kim K, Kim YS, Im K. Stable production of transgenic pepper plants mediated by Agrobacterium tumefaciens. HortScience. 2007;42(6):1425–1430. https://doi.org/10.21273/HORTSCI.42.6.1425
Kreuze JF, Valkonen JP. Utilization of engineered resistance to viruses in crops of the developing world, with emphasis on sub-Saharan Africa. Curr Opin Virol. 2017;26:90–97. https://doi.org/10.1016/j.coviro.2017.07.022
Bawa AS, Anilakumar KR. Genetically modified foods: safety, risks and public concerns-a review. J Food Sci Technol. 2013;50(6):1035–1046. https://doi.org/10.1007/s13197-012-0899-1
Timmons AM, Charters YM, Crawford JW, Burn D, Scott SE, Dubbels SJ, et al. Risks from transgenic crops. Nature. 1996;380(6574):487. https://doi.org/10.1038/380487a0
Ochoa-Alejo N, Ramirez-Malagon R. In vitro chili pepper biotechnology. In Vitro Cell Dev Biol Plant. 2001;37:701–729. https://doi.org/10.1007/s11627-001-0121-z
Nugroho LH. Red pepper (Capsicum spp.) fruit: a model for the study of secondary metabolite product distribution and its management. AIP Conf Proc. 2016;1744:020034. https://doi.org/10.1063/1.4953508
Phimchan P, Chanthai S, Bosland PW, Techawongstien S. Enzymatic changes in phenylalanine ammonia-lyase, cinnamic-4-hydroxylase, capsaicin synthase, and peroxidase activities in Capsicum under drought stress. J Agric Food Chem. 2014;62(29):7057–7062. https://doi.org/10.1021/jf4051717
Turner LB, Wellburn AR. Changes in adenylate nucleotide levels in the leaves of Capsicum annuum during water stress. J Plant Physiol. 1985;120(2):111–122. https://doi.org/10.1016/S0176-1617(85)80015-8
Gutiérrez-Luna FM, Hernández-Domínguez EE, Valencia-Turcotte LG, Rodríguez-Sotres R. Review: pyrophosphate and pyrophosphatases in plants, their involvement in stress responses and their possible relationship to secondary metabolism. Plant Sci. 2018;267:11–19. https://doi.org/10.1016/j.plantsci.2017.10.016
Kim S, Park M, Yeom S, Kim Y, Lee JM, Lee H. et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet. 2014;46(3):270–278. https://doi.org/10.1038/ng.2877
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 1968;50(1):151–158. https://doi.org/10.1016/0014-4827(68)90403-5
Gutiérrez-Luna FM, Navarro de la Sancha E, Valencia-Turcotte LG, Vázquez-Santana S, Rodríguez-Sotres R. Evidence for a non-overlapping subcellular localization of the family I isoforms of soluble inorganic pyrophosphatase in Arabidopsis thaliana. Plant Sci. 2016;253:229–242. https://doi.org/10.1016/j.plantsci.2016.10.005
Navarro de la Sancha E, Coello-Coutiño MP, Valencia-Turcotte LG, Hernández-Domínguez EE, Trejo-Yepes G, Rodríguez-Sotres R. Characterization of two soluble inorganic pyrophosphatases from Arabidopsis thaliana. Plant Sci. 2007;172(4):796–807. https://doi.org/10.1016/j.plantsci.2006.12.011
Zor T, Selinger Z. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem. 1996;236(2):302–308. https://doi.org/10.1006/abio.1996.0171
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–685. https://doi.org/10.1038/227680a0
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2014.
Min J, Shin SH, Jeon EM, Park JM, Hyun JY, Harn CH. Pepper, chili (Capsicum annuum). In: Wang K, editor. Agrobacterium protocols. New York, NY: Springer; 2015. p. 311–320. (Methods in Molecular Biology; vol 1223). https://doi.org/10.1007/978-1-4939-1695-5_25
Kehie M, Kumaria S, Tandon P. Osmotic stress induced-capsaicin production in suspension cultures of Capsicum chinense Jacq. cv. Naga King Chili. Acta Physiol Plant. 2012;34(5):2039–2044. https://doi.org/10.1007/s11738-012-0991-1
Weathers PJ, Fadzillah NM, Cheetham RD. Light inhibits the formation of capsaicin from Capsicum callus. Planta Med. 1992;58(3):278–279. https://doi.org/10.1055/s-2006-961455
DOI: https://doi.org/10.5586/aa.1792
|
|
|