Effects of Palm Leaf Biochar on the Availability of Soil Nutrients, Leaf Nutrient Concentration, and Physiological Characteristics of Melon Plants (Cucumis melo L.) Under Drought Stress

Sajad Bagheri, Mohammad Reza Hassandokht, Abbas Mirsoleimani, Amir Mousavi

Abstract


To investigate the effect of palm leaf biochar on the element absorption and reduction of drought stress effects in melon plants, an experiment was conducted using a split plot in a randomized complete block design with three replications in two successive years. The main plot contained three levels of drought stress (60%, 85%, and 100% water requirement) and the subplot contained four levels of biochar (0, 150, 300, and 450 g per plant). The results revealed that biochar application reduced the effect of drought stress and thus proline content in plants. Application of 300 g biochar per plant with 100% water requirement increased total chlorophyll by 131% compared to control. The treatment of 450 g biochar per plant with 100% water requirement increased chlorophyll a and b and leaf nitrogen (N), potassium (K), calcium (Ca), and manganese (Mn) content by 169%, 127%, 58%, 65%, 44%, and 48%, respectively, compared to control. The treatment of 450 g biochar per plant increased phosphorus (P) and magnesium (Mg) content of leaves by 20% and 31%, respectively, in comparison with control. The interaction of drought stress and biochar indicated that the treatment of 450 g biochar per plant with 60% of water requirement increased plant iron, zinc, and copper by 60%, 44%, and 66%, respectively, compared to the biochar-free treatment with 100% water requirement. Addition of 450 g biochar per plant and irrigation with 60% of water requirement increased soil N, P, and K by 150%, 13%, and 75%, respectively, compared to the biochar-free treatment with 100% water requirement. The results indicated that the use of biochar can be a successful strategy for improving water use efficiency and reducing drought stress in melon plants.

Keywords


biochar; drought stress; macroelements; microelements; soil organic matter

Full Text:

PDF XML (JATS)

References


Afshar, R. K., Hashemi, M., DaCosta, M., Spargo, J., & Sadeghpour, A. (2016). Biochar application and drought stress effects on physiological characteristics of Silybum marianum. Communications in Soil Science and Plant Analysis, 47(6), 743–752. https://doi.org/10.1080/00103624.2016.1146752

Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61–68. https://doi.org/10.1016/j.agwat.2015.04.010

Akrami, M., & Arzani, A. (2019). Inheritance of fruit yield and quality in melon (Cucumis melo L.) grown under field salinity stress. Scientific Reports, 9, Article 7249. https://doi.org/10.1038/s41598-019-43616-6

Alam, S. M. (1999). Nutrient uptake by plants under stress conditions. In M. Pessarakli (Ed.), Handbook of plant and crop stress (pp. 285–313). Marcel Dekker. https://doi.org/10.1201/9780824746728.ch12

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris L. Plant Physiology, 24, 1–15. https://doi.org/10.1104/pp.24.1.1

Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337(1–2), 1–18. https://doi.org/10.1007/s11104-010-0464-5

Basso, A. S., Miguez, F. E., Laird, D. A., Horton, R., & Westgate, M. (2013). Assessing potential of biochar for increasing water-holding capacity of sandy soils. Global Change Biology Bioenergy, 5, 132–143. https://doi.org/10.1111/gcbb.12026

Bates, L. S., Waldern, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060

Bremner, J. M. (1996). Nitrogen-total. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis: Part 3 chemical methods (pp. 1085–1121). Soil Science Society of America; American Society of Agronomy. https://doi.org/10.2136/ sssabookser5.3.c37

Chan, K. Y., Zwieten, L., Meszaros, V., Downie, I. A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46, 437–444. https://doi.org/10.1071/SR08036

Chintala, R., Mollinedo, J., Schumacher, T. E., Papiernik, S. K., Malo, D. D., Clay, D. E., & Gulbrandson, D. W. (2013). Nitrate sorption and desorption in biochars from fast pyrolysis. Microporous and Mesoporous Materials, 179, 250–257. https://doi.org/10.1016/j.micromeso.2013.05.023

Clough, T. J., Condron, L. M., Kammann, C., & Müller, C. (2013). A review of biochar and soil nitrogen dynamics. Agronomy, 3(2), 275–293. https://doi.org/10.3390/agronomy3020275

Gartler, J., Robinson, B., Burton, K., & Clucas, L. (2013). Carbonaceous soil amendments to biofortify crop plants with zinc. Science of the Total Environment, 465, 308–313. https://doi.org/10.1016/j.scitotenv.2012.10.027

Ghobadi, M., Taherabadi, S., Ghobadi, M. E., Mohammadi, G. R., & Jalali-Honarmand, S. (2013). Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress. Industrial Crops and Products, 50, 29–38. https://doi.org/10.1016/j.indcrop.2013.07.009

Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., & Egamberdieva, D. (2016). Bioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungi. Saudi Journal of Biological Sciences, 23(1), 39–47. https://doi.org/10.1016/j.sjbs.2015.11.007

Hassandokht, M. (2012). The technology of vegetable products. Selseleh Publications.

Heidari, M., & Rezapor, A. R. (2011). Effect of water stress and sulfur fertilizer on grain yield, chlorophyll and nutrient status of black cumin (Nigella sativa L.). Journal of Crop Production and Processing, 1(1), 81–90.

Helmke, P. A., & Sparks, D. L. (1996). Lithium, sodium, potassium, rubidium, and cesium. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis: Part 3 chemical methods (pp. 551–574). Soil Science Society of America; American Society of Agronomy. https://doi.org/10.2136/sssabookser5.3.c19

Jackson, M. L. (2005). Soil chemical analysis: Advanced course. UW-Madison Libraries Parallel Press.

Jalali, M. (2006). Kinetics of non-exchangeable potassium release and availability in some calcareous soils of Western Iran. Geoderma, 135, 63–71. https://doi.org/10.1016/j.geoderma.2005.11.006

Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., & Karlen, D. L. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3–4), 443–449. https://doi.org/10.1016/j.geoderma.2010.05.013

Lawrinenko, M., & Larid, D. A. (2015). Anion exchange capacity of biochar. Green Chemistry, 17, 4628–4636. https://doi.org/10.1039/C5GC00828J

Lehmann, J., & Joseph, S. (2009). Biochar for environmental management. Earthscan.

Lehmann, J., Silva, J. D., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil, 249, 343–357. https://doi.org/10.1023/A:1022833116184

Méndez, A., Gómez, A., Paz-Ferreeiro, J., & Gascó, G. (2012). Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere, 89, 1354–1359. https://doi.org/10.1016/j.chemosphere.2012.05.092

Najafi, G. M. (2015). Effect of different biochars application on some soil properties and nutrients availability in a calcareous soil. Journal of Soil Science, 29, 351–358.

Nelson, D. W., & Sommers, L. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page, R. H. Miller, & D. Keeney (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 539–579). American Society of Agronomy; Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c29

Nigussie, A., Kissi, E., Misganaw, M., & Ambaw, G. (2012). Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal of Agriculture and Environmental Science, 12(3), 369–376.

Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 174(2), 105–112. https://doi.org/10.1097/SS.0b013e3181981d9a

Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture.

Radin, J. W., & Eidenbock, M. P. (1984). Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants. Plant Physiology, 75(2), 372–377. https://doi.org/10.1104/pp.75.2.372

Rahman, A. A., Shalaby, A. F., & Monayeri, M. O. E. (1971). Effect of moisture stress on metabolic products and ions accumulation. Plant and Soil, 34(1), 65–90. https://doi.org/10.1007/BF01372762

Ram, M., Ram, D., & Singh, S. (1995). Irrigation and nitrogen requirements of Bergamot mint on a sandy loam soil under sub-tropical conditions. Agricultural Water Management, 27(1), 45–54. https://doi.org/10.1016/0378-3774(95)91231-U

Rasouli, V., & Golmohammadi, M. (2009). Evaluation of drought stress tolerance in grapevine cultivars of Qazvin Province. Seed and Plant Improvement Journal, 2, 349–359.

Resnik, M. E. (1970). Effect of mannitol and polyethylene glycol on phosphorus uptake by maize plants. Annals of Botany, 34(3), 497–504. https://doi.org/10.1093/oxfordjournals.aob.a084385

Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture. https://doi.org/10.1097/00010694-195408000-00012

Rowell, D. (1994). Soil science: Methods and applications. Longman Scientific and Technical.

Sharifabad, H. H. (2000). Plant, dryness and drought. Publications of Jungles and Grasslands Institute.

Sposito, G. (1984). The surface chemistry of soils. Oxford University Press.

Sun, Z., Bruun, E. W., Arthur, E., Jonge, L. W., Moldrup, P., & Hauggaard-Nielsen, H. (2014). Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils. Biology and Fertility of Soils, 50, 1087–1097. https://doi.org/10.1007/s00374-014-0928-5

van Herwijnen, R., Hutchings, T. R., Al-Tabbaa, A., Moffat, A. J., Johns, M. L., & Ouki, S. K. (2007). Remediation of metal contaminated soil with mineral-amended composts. Environmental Pollution, 150(3), 347–354. https://doi.org/10.1016/j.envpol.2007.01.023

Vieira, R., TeKrony, D., & Egli, D. (1992). Effect of drought and defoliation stress in the field on soybean seed germination and vigor. Crop Science, 32, 471–475. https://doi.org/10.2135/cropsci1992.0011183X003200020037x

Widowati, B. G., & Soehono, L. A. (2012). The effect of biochar on the growth and n fertilizer requirement of maize (Zea mays L.) in green house experiment. Journal of Agricultural Science, 4(5), 255–262. https://doi.org/10.5539/jas.v4n5p255

Yuan, J. H., & Xu, R. K. (2011). The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 27(1), 110–115. https://doi.org/10.1111/j.1475-2743.2010.00317.x




DOI: https://doi.org/10.5586/aa.7311

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society