Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants

Anna Milewska-Hendel, Robert Gawecki, Maciej Zubko, Danuta Stróż, Ewa Kurczyńska

Abstract


The article describes the current knowledge about the impact of nanoparticles on plant development with a particular emphasis on crop plants. Nanotechnology is an intensively developing field of science. This is due to the enormous hopes that have been placed on the achievements of nanotechnology in various areas of life. Increasingly, it has been noted that apart from the future benefits of nanotechnology in our everyday life, nanoparticles (NPs) may also have adverse effects that have not been sufficiently explored and understood. Most analyses to date have been focused on the influence of nanomaterials on the physiological processes primarily in animals, humans and bacteria. Although our knowledge about the influence of NPs on the development of plants is considerably smaller, the current views are presented below. Such knowledge is extremely important since NPs can enter the food chain, which may have an influence on human health.

Keywords


apoplast; crop plants; development; nanoparticles; plants; plasmodesmata; symplast

Full Text:

PDF

References


Feynman RP. There’s plenty of room at the bottom. Eng Sci. 1960;23(5):22–36.

Taniguchi N. On the basic concept of nanotechnology. In: Proceedings of the International Conference on Production Engineering; 1974 Aug 26–29; Tokyo, Japan. Tokyo: Japan Society of Precision Engineering; 1974. p. 18–23.

Dietz KJ, Herth S. Plant nanotoxicology. Trends Plant Sci. 2011;16(11):582–589. http://dx.doi.org/10.1016/j.tplants.2011.08.003

Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem. 2008;27:1825–1851. http://dx.doi.org/10.1897/08-090.1

Ruzer LS. Exposure and dose: health effect studies associated with nanometer aerosols. J Nanomed Nanotechnol. 2011;2:120. http://dx.doi.org/10.4172/2157-7439.1000120

Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005;7:55–76. http://dx.doi.org/10.1146/annurev.bioeng.7.060804.100432

Begum P, Ikhtiari R, Fugetsu B. Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomater. 2014;4(2):203–221. http://dx.doi.org/10.3390/nano4020203

Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem. 2011;59(8):3485–3498. http://dx.doi.org/10.1021/jf104517j

Buzea C, Blandino IIP, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–MR172. http://dx.doi.org/10.1116/1.2815690

Gittins DI, Bethell D, Nichols RJ, Schiffrin DJ. Diode-like electron transfer across nanostructured films containing a redox ligand. J Mater Chem. 2000;10:79–83. http://dx.doi.org/10.1039/A902960E

Mink JE, Hussain MM. Sustainable design of high – performance microsized microbial fuel cell with carbon nanotube anode and air cathode. ACS Nano. 2013;7(8):6921–6927. http://dx.doi.org/10.1021/nn402103q

Landers J, Turner JT, Heden G, Carlson AL, Bennett NK, Moghe PV, et al. Carbon nanotube composites as multifunctional substrates for in situ actuation of differentiation of human neural stem cells. Adv Healthc Mater. 2014;3(11):1745–1752. http://dx.doi.org/10.1002/adhm.201400042

Whitney JR, Rodgers A, Harvie E, Carswell WF, Torti S, Puretzky AA, et al. Spatial and temporal measurements of temperature and cell viability in response to nanoparticle – mediated photothermal therapy. Nanomedicine (Lond). 2012;7(11):1729–1742. http://dx.doi.org/10.2217/nnm.12.66

Zhang BT, Zheng X, Li HF, Lin JM. Application of carbon-based nanomaterials in sample preparation: a review. Anal Chim Acta. 2013;784(19):1–17. http://dx.doi.org/10.1016/j.aca.2013.03.054

Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut. 2007;150(1):5–22. http://dx.doi.org/10.1016/j.envpol.2007.06.006

Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FS, Baghdadi A. Effects of engineered nanomaterials on plants growth: an overview. ScientificWorldJournal. 2014;2014:641759. http://dx.doi.org/10.1155/2014/641759

Sokół JL. Nanotechnologia w życiu człowieka. Economy and Management. 2012;4(1):18–29.

Zuverza-Mena N, Armendariz R, Peralta-Videa JR and Gardea-Torresdey JL. Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Front Plant Sci. 2016;7:90. http://dx.doi.org/10.3389/fpls.2016.00090

Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, et al. Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem. 2016. http://dx.doi.org/10.1016/j.plaphy.2016.04.024

Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV. Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon N Y. 2015;81:607–619. http://dx.doi.org/10.1016/j.carbon.2014.09.095

Thuesombat P, Hannongbua S, Akasit S, Chadchawan S. Effect ofsilver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf. 2014;104:302–309. http://dx.doi.org/10.1016/j.ecoenv.2014.03.022

Lin D, Xing B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut. 2007;150(2):243–250. http://dx.doi.org/10.1016/j.envpol.2007.01.016

Shaw AK, Hossain Z. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere. 2013;93(6):906–915. http://dx.doi.org/10.1016/j.chemosphere.2013.05.044

An J, Zhang M, Wang S, Tang J. Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. Food Science and Technology. 2008;41:1000–1007. http://dx.doi.org/10.1016/j.lwt.2007.06.019

Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS. Effects of nano-iron oxide particles on agronomic traits of soybean. Int J Biosci. 2010;2(2):112–113. http://dx.doi.org/10.12692/ijb/3.9.267-272

Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, et al. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ. 2012;1(431):197–208. http://dx.doi.org/10.1016/j.scitotenv.2012.04.073

Asli S, Neumann PM. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ. 2009;32(5):577–584. http://dx.doi.org/10.1111/j.1365-3040.2009.01952.x

Feichtmeier NS, Walther P, Leopold K. Uptake, effects and regeneration of barley plants exposed to gold nanoparticles. Environ Sci Pollut Res Int. 2015;22(11):8549–8558. http://dx.doi.org/10.1007/s11356-014-4015-0

Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, et al. Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ. 2014;15(472):834–841. http://dx.doi.org/10.1016/j.scitotenv.2013.11.018

Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012;66(3):303–310. http://dx.doi.org/10.1007/s10725-011-9649-z

Musante C, White JC. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol. 2010;27(9):510–517. http://dx.doi.org/10.1002/tox.20667

López-Moreno ML, Avilés L, Pérez NG, Álamo Irizarry B, Perales O, Cedeno-Mattei Y, et al. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci Total Environ. 2016:45–52. http://dx.doi.org/10.1016/j.scitotenv.2016.01.063

Santos AR, Miguel AS, Tomaz L, Malhó R, Maycock C, Vaz Patto MC, et al. The impact of CdSe/ZnS quantum dots in cells of Medicago sativa in suspension culture. J Nanobiotechnology. 2010;8:24. http://dx.doi.org/10.1186/1477-3155-8-24

Wang A, Zheng Y, Peng F. Thickness-controllable silica coating of CdTe QDs by reverse microemulsion method for the application in the growth of rice. J Spectrosc. 2014;169245:1–5 http://dx.doi.org/10.1155/2014/169245

Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar S. Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc. 2011;21:2057–2068. http://dx.doi.org/10.1007/s10895-011-0904-5

Zhu H, Han J, Xiao JQ, Jin Y. Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit. 2008;10:713–717. http://dx.doi.org/10.1039/B805998E

Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, et al. Uptake, translocation and transmission of carbon nanomaterials in rice plants. Small. 2009;5(10):1128–1132. http://dx.doi.org/10.1002/smll.200801556

Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, et al. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano. 2011;5(1):493–499. http://dx.doi.org/10.1021/nn102344t

Etxeberria E, Gonzalez P, Baroja-Fernández E, Romero JP. Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells. Plant Signal Behav. 2006;1(4):196–200. http://dx.doi.org/10.1007/978-3-642-32463-5_5

Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3(10):3221–3227. http://dx.doi.org/10.1021/nn900887m

Carpita N, Sabularsed D, Montezinos D, Delmer DP. Determination of the pore size of cell walls of living plant cells. Science. 1979;205(4411):1144–1147. http://dx.doi.org/10.1126/science.205.4411.1144

Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem. 2010;58(6):3689–3693. http://dx.doi.org/10.1021/jf904472e

Gui X, Deng Y, Rui Y3, Gao B, Luo W, Chen S, et al. Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3). Environ Sci Pollut Res Int. 2015;22(22):177169–17723. http://dx.doi.org/10.1007/s11356-015-4976-7

Peng J, Xu W, Teoh CL, Han S, Kim B, Samanta A, et al. High-efficiency in vitro and in vivo detection of Zn2+ by dye-assembled upconversion nanoparticles. J Am Chem Soc. 2015;137(6):2336–2342. http://dx.doi.org/10.1021/ja5115248

Dimkpa CO, Hansen T, Stewart J, McLean JE, Britt DW, Anderson AJ. ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris). Nanotoxicology. 2015;9(3):271–278. http://dx.doi.org/10.3109/17435390.2014.900583

Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, et al. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology. 2013;7(3):323–337. http://dx.doi.org/10.3109/17435390.2012.658094

Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY. Role of nanoparticles in plants. In: Siddiqui MH, Al-Whaibi MH, Firoz M, editors. Nanotechnology and plant sciences. Nanoparticles and their impact on plants. Cham: Springer; 2015: p. 19–35. http://dx.doi.org/10.1007/978-3-319-14502-0_2