Pollen viability of Salix myrtilloides L. – an endangered species in Poland

Magdalena Pogorzelec, Artur Serafin, Barbara Banach-Albińska, Agnieszka Szczurowska, Marzena Parzymies, Urszula Bronowicka-Mielniczuk

Abstract


Salix myrtilloides L. (swamp willow) is the most endangered species among the boreal Salix species in Poland. The number and size of its population have been decreasing constantly since the 1990s. The main aim of the study was to determine the viability of collected S. myrtilloides pollen and optimal conditions for its in vitro germination. The pollen of S. myrtilloides was collected from 25 male individuals from a population growing in the mid-forest peat bog Dekowina (Sobibór Landscape Park) in May 2014. Two methods were applied to estimate the viability of fresh and stored pollen: staining pollen with 2% acetocarmine solution and in vitro germinability. Various temperature (11°C, 23°C) and light conditions as well as different concentrations of glucose (1%, 2.5%, 5%, or 7.5%) were tested for the optimization of in vitro germination. We documented relatively high S. myrtilloides pollen viability. Pollen tube growth was found to be largely affected by both glucose content in the medium and thermal conditions during germination. Fresh pollen germinated most effectively on the medium with 2.5% glucose (stored pollen – in 5% glucose), at 23°C and in the presence of light. We conclude that pollen viability of S. myrtilloides does not seem to be a limiting factor for reproductive success. Moreover, the pollen is not sterile even after storage for 12 months. The S. myrtilloides individuals from the Dekowina peat bog produce viable pollen grains that are able to germinate and therefore it can be used to pollinate other populations present in the Polesie Lubelskie region for gene pool enrichment.

Keywords


Salix myrtilloides; pollen viability; pollen germination; Polesie Lubelskie

Full Text:

PDF

References


Świerkosz K, Boratyński A. Chorological and synanthropodynamical analysis of trees and shrubs of the Stołowe Mts. (Middle Sudety). Dendrobiology. 2002;48:75–85.

Mayer J, Heinz-Werner S. Wielki atlas drzew i krzewów. Warszawa: Delta; 2007.

Bernátová D, Migra V. Salix myrtilloides and Salix × onusta in Slovakia. Biologia. 2012;67(4):659–662. http://dx.doi.org/10.2478/s11756-012-0047-4

Gostyńska-Jakuszewska M, Kruszelnicki J, Rutkowski L. Salix myrtilloides L. In: Zarzycki K, Kaźmierczakowa R, editors. Polska czerwona księga roślin. Paprotniki i rośliny kwiatowe. Kraków: Instytut Botaniki im. Władysława Szafera, Polska Akademia Nauk; 2001.

Piękoś-Mirkowa H, Mirek Z. Rośliny chronione. Warszawa: Multico; 2006.

Jasiewicz A. Flora Polski – rośliny naczyniowe 3. Kraków: Instytut Botaniki im. Władysława Szafera, Polska Akademia Nauk; 1992.

Churski M, Danielewicz W. Salix myrtilloides in the north central Poland. Distribution, threats and conservation. Dendrobiology. 2008;60:3–9.

Fijałkowski D. Obserwacje nad ekologią i nad rozmieszczeniem wierzby borówkolistnej (Salix myrtilloides L.) na Pojezierzu Łęczyńsko-Włodawskim. Acta Soc Bot Pol. 1958;27:605–611.

Boratyński A. Chronione i godne ochrony drzewa i krzewy polskiej części Sudetów, Pogórza i Przedgórza Sudeckiego. 4. Salix myrtilloides L. Arboretum Kórnickie. 1988;33:5–11.

Matuła J, Wojtun B, Żołnierz L, Klara T. Extinct and rare plant species on the mires of the Izerskie Mountains. Opera Corcontica. 2000;37:296–303.

Pogorzelec M, Banach-Albińska B, Serafin A, Szczurowska A. Population resources of an endangered species Salix lapponum L. in Polesie Lubelskie region (eastern Poland). Acta Agrobot. 2014;67(4):81–86. http://dx.doi.org/10.5586/aa.2014.043

Pogorzelec M, Głębocka K, Hawrylak-Nowak B, Bronowicka-Mielniczuk U. Assessment of chosen reproductive cycle processes and genetic diversity of Salix myrtilloides L. in wetlands of Polesie Lubelskie: the prospects of its survival in the region. Pol J Ecol. 2015;63:352–364. http://dx.doi.org/10.3161/15052249PJE2015.63.3.006

Wrońska-Pilarek D, Tomlik-Wyremblewska A. Pollen viability and in vitro germination of selected Central European species from genus Rosa analysed with different methods. Dendrobiology. 2010;64:43–53.

Batos B, Nikolić BM. Variability of in vitro germination of Picea omorica pollen. Dendrobiology. 2013;69:13–19. http://dx.doi.org/10.12657/denbio.069.002

Soares TL, Jesus ON, Santos-Serejo JA, Oliveira EJ. In vitro pollen germination and pollen viability in passion fruit (Passiflora spp.). Rev Bras Frutic. 2013;35(4):1116–1126. http://dx.doi.org/10.1590/S0100-29452013000400023

Mourelle D, Gaiero P, Speroni G, Millán C, Gutiérrez L, Mazzella C. Comparative pollen morphology and viability among endangered species of Butia (Arecaceae) and its implications for species delimitation and conservation. Palynology. 2016;40:160–171. http://dx.doi.org/10.1080/01916122.2014.999955

Hamrick JL. Response of forest trees to global environment al changes. For Ecol Manage. 2004;197:323–335. http://dx.doi.org/10.1016/j.foreco.2004.05.023

Ruebenbauer T, Müller HW. Ogólna hodowla roślin. Warszawa: Państwowe Wydawnictwo Naukowe; 1985.

Nassar NMA, Santos ED, Sra D. The transference of apomixes genes from Manihot neusaria Nassar to cassava, M. eculenta Crantz. Hereditas. 2000;132:167–170. http://dx.doi.org/10.1111/j.1601-5223.2000.00167.x

Lyra DH, Sampaio LS, Pereira DA, Silva AP, Amaral CLF. Pollen viability and germination in Jatropha ribifolia and Jatropha mollissima (Euphorbiaceae): species with potential for biofuel production. Afr J Biotechnol. 2011;10:368–374.

Diaz L, Garay BR. Simple methods for in vitro pollen germination and pollen preservation of selected species of the genus Agave. e-Gnosis. 2007;6:1–7.

Asma BM. Determination of pollen viability, germination ratios and morphology of eight apricot genotypes. Afr J Biotechnol. 2008;7:4269–4273.

Beyhan N, Serdar U. Assessment of pollen viability and germinability in some European chestnut genotypes (Castanea sativa L.). Horticultural Science. 2008;35:171–178.

Báez P, Riveros M, Lehnebach C. Viability and longevity of pollen of Nothofagus species in south Chile. N Z J Bot. 2002;40(4):671–678. http://dx.doi.org/10.1080/0028825X.2002.9512822

Ren H, Jian SG, Liu HX, Zhang QM, Lu HF. Advances in reintroduction of rare and endangered wild plant species. Sci China Life Sci. 2014;57:603–609. http://dx.doi.org/10.1007/s11427-014-4658-6

Śnieżko R. Pylniki i pyłek w hodowli in vitro. Wiad Bot. 1991;35:23–33.

Tangmitcharoen S, Owens JN. Pollen viability and pollen-tube growth following controlled pollination and their relation to low fruit production in teak (Tectona grasndis Linn. f.). Ann Bot. 1997;80(4):401–410. http://dx.doi.org/10.1006/anbo.1996.0440

Bolat I, Pirlak L. An investigation on pollen viability, germination and tube growth in some stone fruits. Turk J Agric For. 1999;23:383–388.

Dane F, Olgun G, Dalgic O. In vitro pollen germination of some plant species in basic culture medium. Journal of Cell and Molecular Biology. 2004;3:71–76.

Khan SA, Perveen A. Germination capacity of stored pollen of Morus alba (Moraceae) and their maintenance. Pak J Bot. 2008;40:1823–1826.

Skalona D, Vavratilova B, Ondrej V, Lebeda A. Optimizing culture for in vitro pollination and fertilization in Cucumis dativus and C. melo. Acta Biol Crac Ser Bot. 2010;52:111–115.

Dafni A, Firmage D. Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Syst Evol. 2000;222(1):113–132. http://dx.doi.org/10.1007/BF00984098

Shivanna KR, Johri BM. The angiosperm pollen structure and function. New Delhi: Wiley Eastern; 1985.

Stanley RG, Linskens HF. Pollen: biology, biochemistry, management. Berlin: Springer; 1974.

Pogorzelec M, Parzymies M, Bronowicka-Mielniczuk U, Banach B, Serafin A. Pollen viability and tissue culture initiation of Salix lapponum, an endangered species in Poland. Acta Scientiarum Polonorum. Hortorum Cultus. 2015;14(6):151–161.

Jaranowski J. O żywotności pyłku w warunkach naturalnych i przy ich sztucznym przechowywaniu. Wiad Bot. 1965;9:295–304.

Heslop-Harrison JS, Heslop-Harrison Y, Shivanna KR. The evaluation of pollen quality and a further appraisal of the fluorochromatic (FCR) test procedure. Theor Appl Genet. 1984;67:367–375. http://dx.doi.org/10.1007/BF00272876

Käpylä M. Testing the age and viability of airborne pollen. Grana. 1991;30(2):430–433. http://dx.doi.org/10.1080/00173139109432003