Long-term effects of soil management practices on selected indicators of chemical soil quality

Alicja Pecio, Zuzanna Jarosz

Abstract


The study was conducted in scope of Catch-C project “Compatibility of agricultural management practices and types of farming in the EU to enhance climate change mitigation and soil health” (7FP), realized in 2012–2014 by the consortium of partners from 10 European countries (http://www.catch-c.eu). This work reports the effects of soil management practices – under different soil and climatic conditions – on the selected soil chemical quality indicators, based on the analysis of data extracted from literature on long term experiments (LTEs) in Europe, as well as from LTEs held by the Catch-C consortium partners. The dataset related to soil chemical quality indicators consisted of 1044 records and referred to 59 long-term trials. The following indicators of chemical soil quality were analyzed: pH, N total content, N total stock, C:N ratio, N mineral content, P and K availability. They are the most frequently used indicators in the European literature on long-term experiments collected in the Catch-C project database. Soil organic carbon, however, the most important indicator was not presented here, due to it was covered by a separate study on indicators for climate change mitigation. The indicators were analyzed using their response ratio (RR) to a management practice. For a given treatment (management practice), this ratio was calculated as the quotient between the indicator value obtained in the treatment, and the indicator value in the reference treatment. The examples were: rotation (with cereals, with legume crops, with tuber or root crops, with grassland) vs. adequate monoculture, catch/cover crops vs. no catch/cover crops, no-tillage and no-inversion tillage vs. conventional tillage, mineral fertilization vs. no fertilization, organic fertilization (compost, farmyard manure, slurry) vs. mineral fertilization at the same available nitrogen input, crop residue incorporation vs. removal. All tested practices influenced soil chemical quality indicators. Both positive and negative effects were observed. When the RR values of seven soil chemical quality indicators were considered in an overall evaluation – based on their significance level, the number of indicators positively affected, and the size of the effects – the best practices among those tested were: farmyard manure application, no-inversion tillage, compost application, mineral fertilization, and no-tillage.

Keywords


soil management practices; chemical soil quality; long-term experiments; meta-analysis

Full Text:

PDF

References


Holland JM. The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ. 2004;103:1–25. http://dx.doi.org/10.1016/j.agee.2003.12.018

Alluvione F, Halvorson AD, Del Grosso SJ. Nitrogen, tillage, and crop rotation effects on carbon dioxide and methane fluxes from irrigated cropping systems. J Environ Qual. 2009;38:2023–2033. http://dx.doi.org/10.2134/jeq2008.0517

Alluvione F, Bertora C, Zavattaro L, Grignani C. Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn. Soil Sci Soc Am J. 2010;74:384–395. http://dx.doi.org/10.2136/sssaj2009.0092

Lal R. Challenges and opportunities in soil organic matter research. Eur J Soil Sci. 2009;60:158–169. http://dx.doi.org/10.1111/j.1365-2389.2008.01114.x

Luo Z, Wang E, Sun OJ. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric Ecosyst Environ. 2010;139:224–231. http://dx.doi.org/10.1016/j.agee.2010.08.006

Tejada M, Gonzalez JL, Garcia-Martinez AM, Parrado J. Effects of different green manures on soil biological properties and maize yield. Bioresour Technol. 2008;99(6):1758–1767. http://dx.doi.org/10.1016/j.biortech.2007.03.052

Alluvione F, Fiorentino N, Bertora C, Zavattaro L, Fagnano M, Chiarandà FQ, et al. Short-term crop and soil response to C-friendly strategies in two contrasting environments. Eur J Agron. 2013;45:114–123. http://dx.doi.org/10.1016/j.eja.2012.09.003

Crews TE, Peoples MB. Legume versus fertilizer sources of nitrogen: Ecological tradeoff s and human needs. Agric Ecosyst Environ. 2004;102:279–297. http://dx.doi.org/10.1016/j.agee.2003.09.018

Cherr CM, Scholberg JMS, McSorley R. Green manure approaches to crop production: a synthesis. Agron J. 2006;98:302–319. http://dx.doi.org/10.2134/agronj2005.0035

Erhart E, Feichtinger F, Hartl W. Nitrogen leaching losses under crops fertilized with biowaste compost compared with mineral fertilization. J Plant Nutr Soil Sci. 2007;170:608–614. http://dx.doi.org/10.1002/jpln.200625181

Ikumo H. Estimation of potential supply of livestock waste compost to replace chemical fertilizer use in Japan based on 2000 census of agriculture. Jpn Agric Res Q. 2005;39:83–89. http://dx.doi.org/10.6090/jarq.39.83

Spaccini R, Piccolo A, Conte P, Haberhauer G, Gerzabek MH. Increased soil organic carbon sequestration through hydrophobic protection by humic substances. Soil Biol Biochem. 2002;34:1839–1851. http://dx.doi.org/10.1016/S0038-0717(02)00197-9

Piccolo A, Spaccini R, Nieder R, Richter J. Sequestration of biologically labile organic carbon in soils by humified organic matter. Clim Change. 2004;67:329–343. http://dx.doi.org/10.1007/s10584-004-1822-1

Johnston AE. The Rothamsted classical experiments. In: Leigh RA, Johnston AE, editors. Long-term experiments in agricultural and ecological sciences. Proceedings of a conference to celebrate the 150th anniversary of Rothamsted Experimental Station; 1993 Jul 14–17; Wallingford, UK. Wallingford: CAB International; 1994. p. 9–37.

Pecio A, Syp A, Fotyma M, Jarosz Z. Impacts of soil management on chemical soil quality. Catch-C “Compatibility of Agricultural Management Practices and Types of Farming in the EU to Enhance Climate Change Mitigation and Soil Health”. 2014. www.catch-c.eu.

Spiegel H, Schlatter N, Haslmayr HP, Lehtinen T, Baumgarten. Impacts of soil management on indicators for climate change mitigation. Catch-C “Compatibility of Agricultural Management Practices and Types of Farming in the EU to Enhance Climate Change Mitigation and Soil Health”. 2014. www.catch-c.eu.

Uhlen G. Long-term effects of fertilizers, manure, straw and crop rotation on total-N and total-C in soil. Acta Agriculturae Scandinavica. 1991;41(2):119–127. http://dx.doi.org/10.1080/00015129109438593

Ministry of Agriculture, Fisheries and Food. Fertiliser recommendations for agricultural and horticultural crops (RB209). 7th ed. London: Stationery Office; 2000.

Rasmussen KJ. Impact of ploughless soil tillage on yield and soil quality: a Scandinavian review. Soil Tillage Res. 1999;53:3–14. http://dx.doi.org/10.1016/S0167-1987(99)00072-0

Hansen EM, Djurhuus J. Nitrate leaching as influenced by soil tillage and catch crop. Soil Tillage Res. 1997;41:203–219. http://dx.doi.org/10.1016/S0167-1987(96)01097-5

Małecka I, Blecharczyk A, Dobrzeniecki T. Zmiany fizycznych i chemicznych właściwości gleby w wyniku stosowania uproszczeń w uprawie roli. Fragmenta Agronomica. 2007;1:182–189.

Dzienia S, Pużyński S, Wereszczaka J. Impact of soil cultivation systems on chemical soil properties. Electronic Journal of Polish Agricultural Universities. Series Agronomy. 2001;4(2):5.

Hussain I, Olson KR, Ebelhar SA. Long-term tillage effects on soil chemical properties and organic matter fractions. Soil Sci Soc Am J. 1999;63:1335–1341. http://dx.doi.org/10.2136/sssaj1999.6351335x

Epstein E, Taylor JM, Chancy RL. Effects of sewage sludge and sludge compost applied to soil on some soil physical and chemical properties. J Environ Qual. 1976;5(4):422–426. http://dx.doi.org/10.2134/jeq1976.00472425000500040021x

Schlegel AJ. Effect of composted manure on soil chemical properties and nitrogen use by grain sorghum. Journal of Production Agriculture. 2013;5(1):153–157. http://dx.doi.org/10.2134/jpa1992.0153

Whitehead DC. Grassland nitrogen. Guildford: CABI/Biddles; 1995.

Idkowiak M, Kordas L. Zmiany właściwości chemicznych i biologicznych gleby w wyniku stosowania uproszczeń w uprawie roli i zróżnicowanego nawożenia azotem. Fragmenta Agronomica. 2004;3:40–48.

Koszański Z, Karczmarczyk S, Podsiadło C. Wpływ deszczowania i nawożenia azotem na pszenicę i pszenżyto ozime uprawiane na glebie kompleksu żytniego dobrego. Cz. III. Gospodarka wodna oraz chemiczne właściwości gleb. Zeszyty Naukowe Akademii Rolniczej w Szczecinie, seria Rolnictwo. 1995;59:51–56.

Panak H, Wojnowska T, Sienkiewicz S. Zmiany niektórych właściwości chemicznych i fizykochemicznych czarnych ziem kętrzyńskich pod wpływem intensywnego nawożenia azotem. Roczniki Gleboznawcze. 1996;47(3/4):41–46.

Vogeler I, Rogasik J, Funder U, Kerstin Panten K, Schnug E. Effect of tillage systems and P-fertilization on soil physical and chemical properties, crop yield and nutrient uptake. Soil Tillage Res. 2009;103:137–143. http://dx.doi.org/10.1016/j.still.2008.10.004

Pecio A, Niedźwiecki J. Effect of tillage depth on physical and chemical soil properties. In: Badalíková B, editor. Proceedings of the 5th International Soil Conference “Soil tillage – new perspectives”; 2008 Jun 30 – Jul 2; Brno, Czech Republic. Troubsko: ISTRO – Czech Branch; 2008. p. 141–147.

Smith SJ, Schepers JS, Porter LK. Assessing and managing agricultural nitrogen losses to the environment. Advances in Soil Science. 1990;14:1–43. http://dx.doi.org/10.1007/978-1-4612-3356-5_1

Oorts K, Bossuyt H, Labreuche J, Merckx JR, Nicolardot B. Carbon and nitrogen stocks in relation to organic matter fractions, aggregation and pore size distribution in no-tillage and conventional tillage in northern France. Eur J Soil Sci. 2007;58:248–259. http://dx.doi.org/10.1111/j.1365-2389.2006.00832.x

Balesdent J, Chenu C, Balabane M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 2000;53:215–230. http://dx.doi.org/10.1016/S0167-1987(99)00107-5

Blecharczyk A, Małecka I, Sierpowski J. Wpływ wieloletniego oddziaływania systemów uprawy roli na fizyko-chemiczne właściwości gleby. Fragmenta Agronomica. 2007;1:7–13.

Stevenson FJ. Humus chemistry: genesis, compisition, reaction. 2nd ed. New York, NY: Willey; 1994.

Sharpley AN, Smith SJ. Nitrogen and phosphorus forms in soils receiving manure. Soil Sci. 1995;159:253–258. http://dx.doi.org/10.1097/00010694-199504000-00004

Plaza C, García-Gil IC, Polo A. Effects of pig slurry application on soil chemical properties under semiarid conditions. Agrochimica. 1997;36:1–2.

Kaszubiak H, Durska G, Kaczmarek W, Filoda G. Effect of slurry on microorganisms and chemical properties of soil. Zentralbl Mikrobiol. 1983;138(7):501–509.

Gangbazo G, Pesant AR, Barnett GM, Chauruest JP, Cluis D. Water contamination by ammonium nitrogen following the spreading of hog manure and mineral fertilizers. J Environ Qual. 1995;24:420–425. http://dx.doi.org/10.2134/jeq1995.00472425002400030004x

Anderson R, Wu Y. Phosphorus quantity-intensity relationships and agronomic measures of P in surface layers of soil from a long-term slurry experiment. Chemosphere. 2001;42:161–170. http://dx.doi.org/10.1016/S0045-6535(00)00121-1

Paustian K, Andren O, Janzen HH, Lal R, Smith P, Tian G, et al. Agricultural soils as a sink to mitigate CO2 emissions. Soil Use and Management. 1997;13:230–244. http://dx.doi.org/10.1111/j.1475-2743.1997.tb00594.x

Aziz I, Ashraf T, Mahmood T, Islam KR. Crop rotation impact on soil quality. Pak J Bot. 2011;43(2):949–960.

Karlen DL, Wollenhaupt NC, Erbach DC, Berry EC, Swan JB, Eash NS, et al. Long-term tillage effects on soil quality. Soil Tillage Res. 1994;32:313–327. http://dx.doi.org/10.1016/0167-1987(94)00427-G

Lemaire G, Recous S, Mary B. Managing residues and nitrogen in intensive cropping systems. New understanding for efficient recovery by crops. In: Fischer T, Turner N, Angus J, McIntyre L, Robertson M, Borrell A, et al., editors. Proceedings of the 4th International Crop Science Congress; 2004 Sep 26 – Oct 1; Brisbane, Australia. Gosford: The Regional Institute Ltd; 2004.

Gselman A, Kramberger B. Benefits of winter legume cover crops require early seeding. Aust J Agric Res. 2008;59:1156–1163. http://dx.doi.org/10.1071/AR08015

Nieder R, Benbi DK. Carbon and nitrogen in the terrestrial environment. Dordrecht: Springer; 2008. http://dx.doi.org/10.1007/978-1-4020-8433-1

Sparrow SD, Lewis CE, Knight CW. Soil quality response to tillage and crop residue removal under subarctic conditions. Soil Tillage Res. 2006;91(1–2):15–21. http://dx.doi.org/10.1016/j.still.2005.08.008

Grace PR, Oades JM, Keith H, Hancock TW. Trends in wheat yields and soil organic carbon in the Permanent Rotation Trial at the Waite Agricultural Research Institute, South Australia. Aust J Exp Agric. 1995;35:857–864. http://dx.doi.org/10.1071/EA9950857

Rodriguez-Lizana A, Carbonell R, González P, Ordóñez R. N, P and K released by the field decomposition of residues of a pea-wheat-sunflower rotation. Nutrient Cycling in Agroecosystems. 2010;87:199–208. http://dx.doi.org/10.1007/s10705-009-9328-x

Metzger MJ, Bunce RGH, Jongman RHG, Mucher CA, Watkins JW. A climatic stratification of the environment of Europe. Global Ecology and Biogeography. 2005;14:549–563. http://dx.doi.org/10.1111/j.1466-822X.2005.00190.x




DOI: https://doi.org/10.5586/aa.1662

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society