Diversity of weed flora, selected biometric characteristics and yielding of Miscanthus spp. cultivated on light and heavy soil

Beata Feledyn-Szewczyk, Mariusz Matyka, Mariola Staniak

Abstract


An important issue related to the cultivation of plants for energy purposes and poorly recognized so far is their impact on the environment, including biodiversity. The aim of the work was to assess weed flora diversity, canopy structure and yield of miscanthus cultivated on two types of soil: light and heavy.

The study was carried out in the Experimental Station of the Institute of Soil Science and Plant Cultivation – State Research Institute at Osiny, Poland (N:51o28, E:22o4), on two fields of miscanthus (Miscanthus saccharflorus Robustus × M. sinensis– M-115) established in 2004, on light loamy sand and heavy loam. The analysis of weed flora was carried out in 2010 and 2011, in mid-June and mid-August, using two methods: the frame method and phytosociological relevés. Moreover, an analysis of green and dry matter yield of miscanthus, some biometric features and leaf area index (LAI) was carried out.

The results showed that weed species diversity in a miscanthus crop was dependent on soil type. A larger number of weed species was found in miscanthus cultivated on heavy soil – 37 – in comparison with miscanthus cultivated on light soil – 33. Sorensen’s indicators showed low similarity between weed communities in miscanthus on light and heavy soil. Weed abundance and percentage of weed cover were lower in miscanthus cultivated on light soil. Weed density decreased during the vegetation season as a result of increasing competitiveness of the miscanthus canopy against weeds. Miscanthus yields were more dependent on weather conditions than the type of soil. Plant height and shoot diameter as well as leaf area index (LAI) were higher in miscanthus grown on heavy soil.


Keywords


Miscanthus; biometric features; plants for energy purposes; weeds; biodiversity

Full Text:

PDF

References


Szczukowski S, Tworkowski J, Piechocki J. Nowe trendy wykorzystania biomasy pozyskiwanej na gruntach rolniczych do wytwarzania energii [New trends in the use of biomass from agriculture for energy production]. Post Nauk Roln. 2001; 6: 87–96.

Faber A. Przyrodnicze skutki uprawy roślin energetycznych [Environmental effects of cultivation of energy crops]. Stud Rap IUNG-PIB. 2008; 11: 43–54.

Faber A, Kuś J, Matyka M. Uprawa roślin na potrzeby energetyki [Cultivation of plants for energy purposes]. Warsaw. 2009; 1–29.

Britt C. Methodologies for ecological monitoring in bioenergy crops. A review and recommendations, Defra Project NF0408. 2003; 1–63.

European Environmental Agency. How much bioenergy can Europe produce without harming the environment. EEA Report No7, 2006; 1–67.

Cunningham MD, Bishop JD, McKay HV, Sage RB. ARBRE monitoring – ecology of short rotation coppice. URN 04/961, DTI. 2004; 1–157.

Sage RB, Robertson PA, Poulson JG. Enhancing the conservation value of short rotation biomass coppice – phase 1 the identification of wildlife conservation potential. ETSU B/W5/0027/REP. DTI. 1994; 1–119.

Sage RB. Short rotation coppice for energy: towards ecological guidelines. Biomass Bioenergy. 1998; 15: 39–47.

Anioł-Kwiatkowska J, Kącki Z, Śliwiński M. Porównanie kompozycji gatunkowej trzech upraw wierzby energetycznej [A comparison of species composition of three energy willow crops]. Pam Puł. 2009; 150: 19–34.

Rowe RL, Street NR, Taylor G. 10 – Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew Sustain Energy Rev. 2009; 13(1): 271–290. http://dx.doi.org/10.1016/j.rser.2007.07.008

Rola J, Sekutowski T, Rola H, Badowski M. Problem zachwaszczenia plantacji wierzby krzewiastej – Salix viminalis [Weed infestation problem of Salix viminalis plantations]. Prog Plant Prot Post Ochr Roślin. 2006; 46(1): 81–87.

Korniak T. Zachwaszczenie upraw wierzby w północno-wschodniej Polsce [Weed infestation of willow coppice plantations in north-eastern Poland]. Pam Puł. 2007; 145: 141–149.

Rola J, Sekutowski T, Rola H, Badowski M. Bioróżnorodność zbiorowisk chwastów na plantacjach wierzby krzewiastej (Salix viminalis L.) na terenie województwa dolnośląskiego i opolskiego [Biodiversity of weed communities on willow (Salix viminalis L.) plantation in the dolnośląskie and opolskie voivodeship]. Pam Puł. 2007; 145: 165–175.

Sekutowski T, Badowski M. Zróżnicowanie zachwaszczenia plantacji Salix viminalis (L.) w zależności od warunków glebowych siedliska [Diversity of weed infestation of Salix viminalis (L.) depending on soil conditions of habitat]. Prog Plant Prot Post Ochr Roślin. 2007; 47(4): 371–378.

Trąba C, Majda J, Wolański P. Zbiorowiska roślinne towarzyszące plantacjom Salix cordata „Americana” Hort. i Salix viminalis L. na terenie województwa podkarpackiego [Plant communities associated with Salix cordata „Americana” Hort. and Salix viminalis L. in Podkarpackie Voivodeship]. Pam Puł. 2007; 145: 221–231.

Wnuk Z, Ziaja M. Zbiorowiska towarzyszące uprawom roślin dla celów energetycznych w Leszawie Dolnej gmina Bircza [Communities associated with plants cultivated for energy purposes in Leszawa Dolna, Bircza community]. Pam Puł. 2007; 145: 243–253.

Fry DA, Slater FM. The effect on plant communities and associated taxa of planting short rotation willow coppice in Wales. Asp Appl Biol. 2008; 90: 287–293.

Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy. 2000; 19(4): 209–227. http://dx.doi.org/10.1016/S0961-9534(00)00032-5

Semere T, Slater F. Ground flora, small mammal and bird species diversity in miscanthus (Miscanthus×giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenergy. 2007; 31(1): 20–29. http://dx.doi.org/10.1016/j.biombioe.2006.07.001

Jodl S, Eppel-Hotz A, Marzini K. Examination of the ecological value of Miscanthus expanses – faunistic studies. In: Kopetz H, Weber T, Palz W, Chartier P, Ferrero GL, editors. Proceeding of the 10th European Bioenergy Conference. Würzburg: C.A.R.M.E.N; 1998. p. 778–779.

Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948; 27(4): 623–656. http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x

Simpson EH. Measurement of diversity. Nature. 1949; 168: 1–668.

Magurran AE. Ecological diversity and its measurement. London: Springer Netherlands; 1988. http://dx.doi.org/10.1007/978-94-015-7358-0

Rutkowski L. Klucz do oznaczania roślin naczyniowych Polski niżowej. Warszawa. Polish Scientific Publishers PWN. 2004; 1–822.

Kahle P, Beuch S, Boelcke B, Leinweber P, Schulten HR. Cropping of Miscanthus in Central Europe: biomass production and influence on nutrients and soil organic matter. Eur J Agron. 2001; 15(3): 171–184. http://dx.doi.org/10.1016/S1161-0301(01)00102-2

Khanna M, Dhungana B, Clifton-Brown J. Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass Bioenergy. 2008; 32(6): 482–493. http://dx.doi.org/10.1016/j.biombioe.2007.11.003

Duer I, Feledyn-Szewczyk B. Monitoring botaniczny w uprawach wieloletnich przeznaczonych na cele energetyczne [Botanical monitoring in perennial bioenergy crops]. Pam Puł. 2009; 150: 105–119.

Kovacs-Lang E, Simpson IC. Biodiversity measurements and indicators for long-term integrated monitoring. No LIMITS. 2000; 6: 1–24.

Feledyn-Szewczyk B, Duer I, Staniak M. Bioróżnorodność flory segetalnej w roślinach uprawianych w ekologicznym, integrowanym i konwencjonalnym systemie produkcji rolnej [Biodiversity of weed flora in crops cultivated in organic, integrated and conventional production systems]. Pam Puł. 2007; 145: 61–76.

Sekutowski T, Rola J. Zbiorowiska chwastów i ich zwalczanie na plantacji Miscanthus giganteus [Weed associations and weed control on a Miscanthus giganteus plantation]. Biul IHAR. 2009; 253: 331–340.

Tuomisto HL, Hodge ID, Riordan P, Macdonald DW. Comparing energy balances, greenhouse gas balances and biodiversity impacts of contrasting farming systems with alternative land uses. Agric Syst. 2012; 108: 42–49. http://dx.doi.org/10.1016/j.agsy.2012.01.004

Felten D, Emmerling C. Effects of bioenergy crop cultivation on earthworm communities-a comparative study of perennial (Miscanthus) and annual crops with consideration of graded land-use intensity. Appl Soil Ecol. 2011; 49: 167–177. http://dx.doi.org/10.1016/j.apsoil.2011.06.001

Matyka M. Produkcyjne i ekonomiczne aspekty uprawy roślin wieloletnich na cele energetyczne [Productive and economic aspects of cultivation of perennial crops for energy purposes] Monografie i Rozprawy Naukowe IUNG-PIB Puławy, 2013; 1–94.

Matyka M, Kuś J. Plonowanie i cechy biometryczne wybranych genotypów miskanta [Yielding and biometric characteristics of selected Miscanthus genotypes]. Probl Inż Rol. 2011; 2: 157–163.

Mathe-Gaspar G, Fodor N, Pokovai K, Kovacs GJ. Crop modelling as a tool to separate the influence of the soil and weather on crop yields. Phys Chem Earth. 2005; 30(1–3): 165–169. http://dx.doi.org/10.1016/j.pce.2004.08.024




DOI: https://doi.org/10.5586/aa.2014.005

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society