Characterization of Aegilops kotschyi Boiss. x Triticum aestivum L. hybrid lines

Roman Prażak, Edyta Paczos-Grzęda

Abstract


A study of four F5 and one BC1F1 Aegilops kotschyi Boiss. x Triticum aestivum L. hybrid lines was conducted to determine their quantitative morphological and qualitative features as well as a molecular investigation was carried out. Observations of ten quantitative traits showed that the F5 hybrid lines exhibited intermediate values between Ae. kotschyi Boiss. and T. aestivum L., or had similar traits to one of the parents. These hybrid lines had a significantly lower number and weight of grains per main spike, main spike fertility and 1000-grain weight than T. aestivum L. cv. ‘Rusałka’. The BC1F1 hybrid line was characterized by wheat-like fertility and phenotype. The F5 hybrid lines were characterized by much higher variability of the analysed morphological traits than T. aestivum L. cv. ‘Rusałka’. Grains of the hybrid lines had higher protein and micronutrient (iron and zinc) content than wheat grains. The presence of DNA fragments specific to Ae. kotschyi Boiss. in the genotypes of the hybrid lines was confirmed by seven ISSR (Inter Simple Sequence Repeats) molecular markers. Two ISSR markers – ISSR23690 and ISSR33650 – were the most effective for germplasm analysis of the hybrid lines. The analysed lines can become a source material for improvement of common wheat T. aestivum L. in crossing programs.

Keywords


Aegilops kotschyi Boiss.; morphological traits; PCR ISSR; iron; zinc; protein; Triticum aestivum L.

Full Text:

PDF

References


Andrés MF, Sin E, Lopez-Brana I, Martin-Sanchez JA, Romero MD, Delibes A, Montes MJ. Cereal cyst nematode resistance conferred by the Cre7 gene from Aegilops triuncialis and its relationship with Cre genes from Australian wheat cultivars. Genome. 2008; 51 (5): 315–319. http://doi:10.1139/G08-015

Coriton O, Barloy D, Huteau V, Lemoine J, Tanguy AM, Jahier J. Assignment of Aegilops variabilis Eig. chromosomes and translocations carrying resistance to nematodes in wheat. Genome. 2009; 52 (4): 338–346. http://doi:10.1139/g09-011

Delibes A, Lόpez-Brañ I, Moreno-Vázquez S, Martin-Sanchez JA. Review. Characterization and selection of hexaploid wheats containing resistance to Heterodera avenae or Mayetiola destructor introgressed from Aegilops. Spanish J Agr Res. 2008; 6: 81–87.

Fedak G. Alien species as sources of physiological traits for wheat improvement. Euphytica. 1985; 34: 673–680.

Feldman M. Gene transfer into cultivated plants. Genetics. 1983; 15 (2): 145–161.

Frauenstein K, Hammer K. Prüfung von Aegilops – Arten auf Resistenz gegen Echten Mehttau, Erysiphe graminis D. C., Braunrost, Puccinia recondita Rob. ex Desm. und Spelzenbraune, Septoria nordum Berk. Kulturpflanze. 1985; 33: 155–163 (in German).

Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Özkan H. Aegilops. [In:] Wild crop relatives: genomic and breeding resources cereals. Chittaranjan Kole (ed.), Springer-Verlag Berlin, Heidelberg; 2011. 1–76.

Kimber G, Feldman M. Wild Wheat: An Introduction. College of Agriculture, University of Missouri, Columbia, Special Report. 1987; 353: 1–146.

Kuraparthy V, Sood S, Gill BS. Molecular genetic description of the cryptic wheat – Aegilops geniculata introgression carrying rust resistance genes Lr57 and Yr40 using wheat ESTs and synteny with rice. Genome. 2009; 52 (12): 1025–1036. http://doi:10.1139/G09-076

Pilch J, Głowacz E. Międzygatunkowe i międzyrodzajowe krzyżowania jako sposób ulepszania cech kłosa w hodowli pszenicy heksaploidalnej Triticum aestivum L. / Interspecific and intergeneric hybridization as a means of improvement of spike characters in breeding of hexaploid Triticum aestivum L. Biul IHAR 1997; 204: 15–31 (in Polish).

Stefanowska G, Prażak R, Kosińska D. Hybrids of Aegilops cylindrica Host., Aegilops juvenalis (Thell.) Eig. and Aegilops triaristata Willd. 6x with Triticum aestivum L. Plant Breed Seed Sci. 1998; 42 (2): 3–18.

Tiwari VK, Rawat N, Neelam K, Randhawa GS, Singh K, Ghuneja P, Dhaliwal HS. Development of Triticum turgidum subsp. durum – Aegilops longissima amphiploids with high iron and zinc content through unreduced gamete formation in F1 hybrids. Genome. 2008; 51 (9): 757–766. http://doi:10.1139/G08-057

Marais GF, McCallum B, Snyman JE, Pretorius ZA, Marais AS. Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breed. 2005; 143: 115–123. http://doi:10.1007/s10681-006-9092-9

Prażak R. Evaluation of brown rust (Puccinia recondita f. sp. tritici) infection in Aegilops species and Triticum aestivum L. cv. Gama. J Appl Genet. 1997; 38B: 123–127.

Thiele A, Schumann E, Peil A, Weber WE. Eyespot resistance in wheat x Aegilops kotschyi backcross lines. Plant Breed. 2002; 121: 29–35. http://doi:10.1046/j.1439-0523.2002.00669.x

Gorham J. Salt Tolerance in the Triticeae: K/Na discrimination in Aegilops species. J Exp Bot. 1990; 41 (226): 615–621. http://doi:10.1093/jxb/41.5.623

Shamsi K, Kobraee S, Rasekhi B. Variation of field components and some morphological traits in bread wheat grown under drought stress. Ann Biolog Res. 2011; 2(2): 372–377.

Waines JG. High temperature stress in wild wheats and spring wheats. Aust J Plant Physiol. 1994; 21: 705–715.

Blüthner WD, Schumann E. Use of Aegilops and tetraploid wheat for wheat protein improvement. Hod Roślin Aklim Nasien. 1988; 32 (1–2): 203–206.

Maqbool A, Arain MA, Siddiqui KA. Screening of Aegilops, Triticum and Hordeum species for grain weight, protein and lysine content. Wheat Inf Serv. 1997; 85: 7–13.

Prażak R. Porównanie zawartości białka w ziarnie gatunków Aegilops i Triticum / Comparision of protein content in the grain of Aegilops and Triticum. Zesz Probl Post Nauk Rol. 2004; 497: 509–516 (in Polish).

Mukai Y, Tsunewaki K. Use of the kotschyi and variabilis cytoplasm in hybrid wheat breeding. [In:] Tsunewaki K, (ed.) Genetic diversity of the cytoplasm in Triticum and Aegilops. Tokyo: Jn Soci Prom Sci.; 1980. 237–250.

Kobayashi M, Tsunewaki K. Production of an effective haploid induced utilizing the kotschyi and variabilis cytoplasms. [In:] Genetic diversity of the cytoplasm in Triticum and Aegilops. K. Tsunewaki (ed.). Jn Soci Prom Sci. Tokyo; 1980. 250–265.

Chhuneja P, Dhaliwal HS, Bains NS, Singh K. Aegilops kotschyi and Aegilops tauschii as sources for higher levels of grain Iron and Zinc. Plant Breed. 2006; 125: 529–531. http://doi:10.1111/j.1439-0523.2006.01223.x

Rawat N, Tiwari VK, Singh N, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS. Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet Resour Crop Evol. 2009; 56: 53–64. http://doi:10.1007/s10722-008-9344-8

Zecevic V, Boskovic J, Dimitrijevic M, Petrovic S. Genetic and phenotypic variability of yield components in wheat (Triticum aestivum L.). Bul J Agric Sci. 2010; 16 (4): 422–428.

Rahman MA, Chikushi J, Yoshida S, Karim AJMS. Growth and yield components of wheat genotypes exposed to high temperature stress under control environment. Bangladesh J Agric Res. 2009; 34 (3): 361–372.

Shimshi D, Mayoral ML, Atsmon D. Response to water stress in wheat and related wild species. Crop Sci. 1982; 22: 123–128.

Bertrand C, Collard Y, Mackill DJ. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc. B 2007; 363 (1491): 557–572. http://doi:10.1098/rstb.2007.2170

PN-75/A-04018. Produkty rolniczo-żywnościowe. Oznaczanie azotu metodą Kjeldahla i przeliczanie na białko: 1975 z poprawką PN-75/A-04018/Az3: 2002 (in Polish).

Milligan BG. Plant DNA isolation. [In:] Molecular analysis of populations: a practical approach. IRL Press, Oxford, UK; 1992. p. 59–88.

Ziętkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple-sequence repeat (SSR) – anchored polymerase chain reaction amplification. Genomics 1994; 20: 176–183.

Stefanowska G. 1995. Charakterystyka niektórych cech morfologicznych i plonotwórczych mieszańców Triticum aestivum L. z Aegilops juvenalis (Thell.) Eig. i z Aegilops ventricosa Tausch. / The characteristics of some morphological and yield-forming features of Triticum aestivum L. and Triticum durum Desf. hybrids with Aegilops ventricosa (Thell.) Eig and Aegilops ventricosa Tausch. Biul IHAR. 1995; 194: 35–43 (in Polish).

Tyrka M, Stefanowska G. 2001. Ocena zróżnicowania cech plonotwórczych mieszańców Aegilops juvenalis i Aegilops ventricosa z pszenicą. / Estimation of diversity of yield forming traits in hybrids of Aegilops juvenalis and Aegilops ventricosa with wheat. Biul IHAR. 2001; 218/219: 57–68 (in Polish).

Pilch J. Performance of interspecific and intergeneric hybrids of Triticum aestivum L. for wheat improvement. Plant Breed Seed Sci. 1996; 40 (3–4): 73–82.

Prażak R. Zmienność i współzależność niektórych cech w mieszańcach Aegilops kotschyi Boiss. x Triticum aestivum L. cv. Rusałka. / Variability and interrelationship of some traits in Aegilops kotschyi Boiss. × Triticum aestivum L. cv. Rusałka hybrids. Biul. IHAR 2009; 252: 43–59 (in Polish).

Cakmak I, Ozkan H, Braun HJ, Welch RM, Rönheld V. Zinc and iron concentrations in seeds of wild, primitive, and modern wheats. Food Nutr Bull. 2000; 21: 401–403.

Okoń S, Kowalczyk K. Description of DNA analysis techniques and their application in oat (Avena L.) genome research. Acta Agrobot. 2012; 65 (1): 3–10. http://doi:10.5586/aa.2012.037

Bryan GJ, Collins AJ, Stephenson P, Orry A, Smith JB, Gale M. Isolation and characterisation of microsatellites from hexaploid wheat. Theor Appl Gent. 1997; 94: 557–563.

Ma ZQ, Röder M, Sorrells ME. Frequencies and sequence characteristics of di-, tri- and tetra – nucleotide microsatellites in wheat. Genome 1996; 39: 123–130. http://doi:10.1139/g96-017

Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK. The use of microsatellite for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet. 2000; 100: 284–292.

Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Röder MS. Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet. 2000; 101: 100–106. http://doi:10.1007/s001220051456

Galaev AV, Babayants LT, Sivolap YM. Detection of the intogression of genome elements of the Aegilops cylindrica Host into the Triticum aestivum L. genome by ISSR and SSR analysis. Russ J Genet. 2004; 40 (12): 1371–1377.

Grądzielewska A, Gruszecka D, Paczos-Grzęda E. Zastosowanie metod RAPD i ISSR do oceny mieszańców pszenżyta z Aegilops crassa 4x Boiss. / Evaluation of hybrids between triticale and Aegilops crassa 4x Boiss applying RAPD and ISSR methods. Folia Pomer Univ Technol Stetin. 2010; 276 (13): 19–30 (in Polish).

Huguet-Robert V, Dedryver F, Röder MS, Korzun V, Abélard P, Tanguy AM, Jaudeau B, Jahier J. 2001. Isolation of a chromosomally engineered durum wheat line carrying the Aegilops ventricosa Pch1 gene for resistance to eyespot. Genome. 2001; 44: 345–349. http://doi:10.1139/g01-014

Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet. 2007; 114 (8), 1451–1456. http://doi:10.1007/s00122-007-0530-4




DOI: https://doi.org/10.5586/aa.2013.057

Journal ISSN:
  • 2300-357X (online)
  • 0065-0951 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society