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I

The theory of limiting factors, formulated in 1905 by
F. F. Blackmann, isan attempt to determine more precisely
the interdependence of factors controlling physiological processes,
especially the carbon dioxyde assimilation. The theory states that
»when a process is conditioned as to its rapidity by a number of
separate factors, the rate of the process is limited by the pace of the
»Slowest “ factor (Blackmann, 1905). If moreover we assume
that the rate of the process is proportional to the intensity of the
slowest factor, then it follows from the theory that on a graph the
curve relating the rate to the intensity of the factor in question takes
the form of two intersecting segments. Thus in the case of light the
first segment represents the rate of photosynthesis for such intensities
of light for which light is the limiting factor, while the second, pa-
rallel to the X axis. corresponds to the photosynthetic activity for
light intensities sufficiently high for some other factor to become the
limiting agent. The value at which there is a transition from the
limitation by one factor (the light) to the limitation by another factor
is the transition value (van den Honert, 1930).

Blackmann’s theory made the object of several investigations.
For a review of their results the reader is referred to the monographs
by Stiles (1926), Spoehr (1926) and Brilliant
(1949) and the papers by Harder (1920, Tschesnokov
and Bazyrina (1930), van der Paauw (1930), van
den Honert (1932) and Smith (1937, 1939). It can be
stated however that at first sight there seems to be little agreement
between the theory and the experimental results. In most cases
instead of two intersecting segments, two short segments connected
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by a long arch are obtained. This kind of curve indicates that for
a certain range of intensities not one but two factors limit the rate of
assimilation — a conclusion which is inconsistent with the basic
assumptions of the theory.

The cause of these deviations from the theory was sought in the
inequality of the experimental conditions. It is tacitly assumed
in the theory that at a given moment the value of the constant factors
as well as of the changing factor must not only be constant but also
equal in all assimilating cells. Let us suppose for instance that the
CO, concentration or the temperature vary in different parts of the
plant. It is obvious then that light will be the limiting factor in one
part of the plant, and in another the temperature or the dioxyde con-
centration and that for a certain range of light intensities not one
but two factors will be limiting the assimilation rate. From these
remarks we conclude that not only the constancy but also the unifor-
mity of all the experimental factors, is an essential condition, for the
application of Blackmann’s principle.

In fact this condition is seldom fullfilled. Let us for instance
consider an algal suspension in a manometric vessel illuminated from
below. Owing to the absorption of the luminous energy by cell pig-
ments the intensity of light diminishes gradually from the bottom
to the surface of the suspension and has the same value only for the
cells at the same level. In multicellular plants owing to diffusion
obstacles not only the light intensity but also the carbon dioxyvde
concentration will vary from one part of the plant to another. Both
van den Honert (1930) and van der Paauw
(1932) fully appreciated the importance of the uniformity of experi-
mental conditions in their study on the validity of Blackmann’s
theory, and they made provision to eliminate the possible source of
errors by reducing to one layer the thickness of the assimilating cells.
Some of the experimental curves obtained by both of them are in
good agreement with the shape required by the theory.

It is the purpose of this paper to corroborate the validity of
Blackmann’s theory in a different manner. Its aim is to demonstrate
that the shapes and the equations of the experimental curves repre-
senting the rate of photosynthesis in relation to the light intensity or
the carbon dioxyde concentration can be deduced from the principle
of limiting factors, provided that the distribution of the light inten-
sity in the assimilating plants or cells is taken into consideration.
For this purpose the assimilation conditions existing in an algal
suspension of the thickness d illuminated from below (fig. 1) will be
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Fig. 1. (left) Algal suspension illuminated from below. 1 — light, d — thick-

ness of the algal layer. h — height of the transition level. Light is the limiting

factor in the upper (u) part, and the factor in excess in the lower (1) part

of the suspension. (right) Decrease of the light intensity in the suspension.

I — intensity of the incident light (at the bottom}, I, and I; — light intensities
at the level z and at the surface of the suspension.

submitted to a closer examination. The light intensity 1, at the level
z is given by the formula

le= le— %=, (1)

where I is the intensity of the incident light and k the light absorption
constant. This relation can also be written:

lognat - l (2) (3

L-

1
zZ =

/
I’ -k

ekz :

We will assume that the assimilation rate dF of a very thin
algal layer at the level z obeys to Blackmann’s principle i. e. increa-
ses proportionally to the light intensity /. as long as this intensity
remains less than the transition value /,:

dlFF =al, dz for o < I, < I;. (4)

For light intensities higher than I; the assimilation rate dF assumes
a constant value independent of the light intensity:

dlr = al,dz for I, = I;. (5)

In the algal suspension we may distinguish two layers: the first
or lower extends from the bottom (z = o) to lewel z = h at which the
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light intensity has decreased to the transition value Iy. The height of
the transition level is (from 3):

== ; Ign ;, . (6)
In the second or upper layer, extending from level h to the surface
(z = d) of the suspension, the light intensity has at all levels values
smaller than It. The rate of assimilation of the whole suspension is
the sum of the rates of both the lower and the upper layers:
F = F, + F,. In deducing them we may observe that the relations (5)
and (4) are valid in the lower and upper layers respectively.
It follows from (5) that the rate F, is the sum of the rates of all
the infinitesimal layers whose global thickness is h:

h
ih

Fi=)alidz= aliz| = alih,

o

substituting for h the value (6) we obtain:

‘_&I( _!'_
F,=5 lgn I

T (7)

Similarly F, is the sum of the rates of all the infinitesimal layers
forming the upper part of the suspension. It follows from (4) and (1)

d d

v d
A S iz, —al " __al —kh __ p—kd
and by (2):
\ al |1 1 a I}

Thus the assimilation rate of the whole algal suspension expressed in
terms of the light intensity is:

. I, 1 I
!'=I',+FE=%§lgn?!+-:(f,—pkd ©)

L<I<Ijex

Function (9) has a physiological meaning only for values of I included
between the limits I; and I; e¥¥. Indeed, it follows from (7) that



Limiting factors 5

when [ < [, the value of I, is negative and I, is therefore deprived
of physiological significance. Similarly it is apparent from equation
(8) that I must be smaller than I;e*?, because otherwise F, would
assume a negative value. On the graph (fig. 2) representing function
(9) only this part of the curve which lies between points A and B (the
abscissae of which are Iy and I;ef?) has a physiological significance.
From (9) we may calculate the corresponding ordinates and thus
obtain the following values for the coordinates of A and B:

k

point A: [qy=1;, Fq= _&_(1____ e%‘) I,

(10)
point B: Iy = Ik, Fy=al/d.

Thus it becomes necessary to inquire as to the form cf F corres-
ponding to the values of I below I; or above /;e*?. The condition I<<I;
signifies that the equation (4) dFF = al,dz is valid for every level of
the suspension. Substituting in (4) for 1, the value I, = le—** (for-
mula (1) and integrating between the limits o and d we obtain:

d
Il
I = fa!e_*“‘ dz = —RE! gk :Tkjil (e —1)
F= :(1 —9;1-4)1: o< I (11)

Formula (11) represents the equation of a straight line passing
through the origin and point A on the curve. It follows from (11)
that for small light intensities the assimilation rate is proportional
to the light intensity.

When I > [, e*? every layer of the suspension receives luminous
energy in amounts superior to the transition value I. Indeed, it may
be seen from (2) that for I = I;e** even at the surface we have [, I,.
We must therefore apply equation (5) to the whole suspension:

o

F= fu!.-dz = al;

n

d
=ald, I = 1 ek, (12)

o

For high light intensities the assimilation rate is independent of the
light intensity. On the graph a line parallel to the X-axis passing
through point B (I;e*?, al;d) of the curve is obtained.
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The straight lines defined by the equations (11) and (12) do not
intersect with curve (9) but are tangent to it at the points A and B
respectively. The equation of the tangent to a curve y — f(x) at the
point x, y is:

Y —y=X—x)}"(x), (13)
where Y and X are the coordinates of the tangent. In our case
. . al a
.U ;:.:f{f}. X = '.'._‘ )r {'x) F==es l‘ e ;\; - k(fkd .

The substitution of these values in (13) gives:

. aly I af I al, a
V= e = (1 e"") = &= — )

}__en", { al, | al ___(af; a ) , zu',’ al

kB Tk The T\l T ket ) Tk T kekd
and after reduction of similar terms we obtain the general equation
of the tangent:

. / a al I

At the point A (I = I;)it takes the form:

«  la a 5l 1 :
Fe (k._kem.) X=% (1 — e,w_,}l-\ (15)

and represents a straight line identical with the line given by
equation (11).

In the same way the equation of the tangent at the point B is
found by making I = [, e*?:

lgn —al/d, (16)

Y—( ale — a ) - al {; ek
T \klerd T ket Tk T

which is the equation of a straight line identical with equation (12)

[1

Let us deduce similar equations for the relation between the
assimilation rate and the cencentration ¢ of carbon dioxyde. We will
consider again an algal suspension of the thickness d illuminated
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from below by a light source of constant intensity I,. A new compli-
cation arises from the necessity of taking into account two variable
factors, viz. the carbon dioxyde concentration and the light intensity.
Because of its gradual diminution from the bottom to the surface of
the suspension it will be possible to find a certain level z = h dividing
this suspension into two layers. In the lower layer light is the factor
in excess and the CO, concentration is the limiting agent. On the
other hand in the upper layer it is the intensity of iight which acts
as the limiting factor. To obtain the rate of photosynthesis of the
whole suspension we must calculate separately the rates for the two
layers.

It is evident that in the lower layer the assimilation rate F, is
proportional to the concentration of the carbon dioxyde and the
thickness h of the layer:

F, = bch, (17)

b being a proportionality factor. However h is a function of ¢, for
the greater is ¢ the greater must be the light intensity if light is not
to become the limiting factor. If the carbon dioxyde concentration
is increased from c, to ¢ the transition level H (where the light inten-
sity is Iy ) will be lowered to a certain level h with greater light in-
tensity [,. We shall assume that between ¢, ¢,, I'n, [ there exist the
relation:'
£ = L or clu = Jiis (18)
Cy Iu L&
but from (1)

(.')'”
C,

1 I ¢
] s s 01
= [ = [,¢ and h= K Ign Toc

The ratio I,/Iy is not a light intensity but a pure number, and there-
fore the expression I,c;/I; corresponds to a certain constant carbon
dioxyde concentration and may be denoted by c.:
Gy = !0‘_:'1 . (18a)
Iy
Then

h = : lgn %", (19)

' It may be pointed out that the -relation (18) forms a new hypothesis
which is not included in the fundamental assumptions (1) (4) and (5).
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substituting this value in (17) we obtain

. be
; =C (
Fy="7 lgn .. (20)
When deducing F, we may observe that the assimilation con-
ditions are exactly the same as in the upper layer considered in the
previous section of this paper, hence

—bly _,,
- k e

(21)

o b[( 1

d
!‘2=Jblne~£7dz='= h—- k
h

ek~ gkd

Substituting for h the value (19) and considering that elognatX — X e
obtain _
p,—2h (C _ iT) _
k \¢, e

By a convenient change of the unit used to measure the light inten-
sity we can write I, = c,, then: ’

b ¢
Fo= (c— e,j;) (22)
Finally the assimilation rate of the whole suspension in relation to
the carbon dioxyde concentration will be

’i' e ]f'1 + [",'2 — bkf'- L{) + i ( (_i‘:‘) (23)

(g2 S ele):

The functions (20) and (22) have a physiological meaning only
for a certain range of carbon dioxyde concentration. Because of the
physiological impossibility for F, to assume negative values it follows
from (20) that ¢, >c. For the same reason it results from (22) that

Cy - ke
c——5>0 or ceri<c.
e L

The meaning of ¢, can be read from (18a) and (1):

= loe, _ Loer .
0 !H !“ e——kH 1 4
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if H = o then ¢, = ¢,. When H = o the transition level is situated
at the bottom of the suspension, ¢, is therefore the minimum concen-
tration for which, under given light conditions, the carbon dioxyde
concentration ceases to be the limiting factor at all levels of the
suspension.

The shape of the curve corresponding to function (23) is similar
to that of function (9) (fig. 3). The coordinates of the initial and termi-
nal points A, B between which the curve has a physiological signi-
ficance are:

point A: c4=c,e*, [4=bc,de*
(24)

point B: ¢y = ¢, Ip= %';'_'" (1—e—*d),

It remains now to calculate the rate of photosynthesis for car-
bon dioxyde concentrations inferior or superior to the limits spe-
cified in (23). The condition ¢<<c, e~*9 signifies that the CO, concen-
tration is the limiting factor in the whole suspension, or that h = d
in (17) and F, = o. Hence

F=F,=bd.c, (¢ < c,e*d) (25)

i. e. for low carbon dioxyde concentrations the assimilation rate is
proportional to the CO, concentration. The meaning of the condition
¢>>c, is that in the whole suspension the limitation is attributable to
the insufficient light intensity; then h = o and F, = o, hence from
(20):

d
F=F,= fbfl, e tdz = -%(1 —e k) (e>c¢,) (26)

i. e. for high dioxyde concentrations the assimilation rate is' a con-
stant independent of the CO, concentration.

As in the first part of this paper it is easy to show that the
straight lines represented by equations (25) and (26) are tangents
to the curve (23) at the points A and B respectively. Indeed, if in the
equation (13) for the tangent we make the following substitutions.

y=1f(c) (equ. 23), x=¢, [(x)=F = IE) lgn %}

we obtain the general equation of the tangent:
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be _be be, b 0 S0 0x —
F—F e (= T go =g 180 K0
. bX ¢,  be  be,
V=10 24+ F— 0 (27)

At the point A (¢ = c,e %) of curve (23) the equation (27) repre-
sents a straight line passing through the origin and identical with
line (25):

bX coetd | be, be,

Y=""1Ign

F 80 = T pord gkt — DX

The equation of the tangent at the point B (¢ = ¢,) is:

, bX be, be,  be,
Y= lgn 2+ P — =0

— ‘,—A'd'}
and corresponds to a straight line parallel to the X-axis and identical
with the line given by equation (26).

Finally let us compare the functions (9) and (23) expressing the
assimilation rate in relation to the light intensity or the carbon dio-
xyde concentration. In order to make the similitude more apparent
we shall denote by X the variables I and c:

. ! b1 ; X

K= _‘?E{ Ign /, + E (h-— e*"‘.) (9)
1 [; :

p=togn 4 b (x—2) 2

These two functions although showing some similitude are not iden-
tical. If however in (23) ¢ and X are replaced by X and [ respectively
the function (23) is transformed into function (9). This result can be
best understood from the following consideration: it results from
assumption (18) that a dioxyde concentration is equivalent to a certain
light intensity; if this intensity is measured in appropriate units we
can write ¢, = I, and substitute I, or ¢, in (23):

be l, b ( 1, ) (23a)

K= o len o [a=

okl
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Now suppose that in (23a) we change the réle of I, and ¢ and consider
I, as the variable X and ¢ as a constant, then

. be X b X
I = K Ign 5 + 5 (\c—— é_fv_d)’ (28)

and it can be seen that functions (9) nad (28) have the same form.
It follows from this similarity that ir an algal suspension the function

s e f,b'_ f)
= I log cTE (( — ok (29)

represents the dependance of the assimilation rate upon the light
intensity I and the carbon dioxyde concentration c. If the object of our
research is the influence of light on the assimilation rate F, c is to
be maintained constant and should be expressed in light intensities
(/). On the contrary, if we wish to study the influence of the CO.
concentration on F, I is to be considered as a constant and should be
expressed in terms of CO, concentration (c,).

II1

The functicns given by the equations (9), (11), (12), (23), (25)
(26) form the solution of the problem formulated in the introductory
part of this paper. They were deduced from the principle of limiting
factors and the additional assumption (18). Strictly speaking they
are only valid for an uniform algal suspension; however, we may
presume that they will retain their validity even when applied to
multicellular plants, especially water plants. Owing to inequal distan-
ces from the light source and mutual shading the cells of a higher
plant are illuminated with intensities ranging from feeble to strong,
and therefore present some similarity with an algal suspension.
Since the leaves of many aquatic plants are formed by one or two
cell layers we may assume a nearly uniform carbon dioxyde con-
centration in all the cells. Therefore, this part of the paper, devoted
to the experimental corroboration of the previous theoretical de-
ductions, will not be limited to algal suspensions, but will use the
experimental evidence obtained with multicellular plants by diffe-
rent writers.

However, since the values of the parameters a, b, k, d, I, and I,
appearing in the functions (9) and (23) are not directly calculable
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from the experimental data it is necessary to transform these
functions in an appropriate manner. Let:

&1}; == p, Eiﬁ =gq, lgnliy=Mlogl,= Mr, 1gnl=Mlog! (30)

(Ign = lognat, M = logarithmic modulus 2, 302585...)

Then function (9) takes the form:

M M 1 ql

F==—logl = of= — or
p p p P
pF + qI + Mr — Mlogl — 1 = o. (31)
Similarly, if
k . Co
=0 TG lgnc, = Mlog c¢,= Mr, lgnc= Mlogc (32)

the function (23) takes the form

pF + q — Mrc + Mclogec — ¢ = o. (33)
¥
8o B :
604
40 A
2od
-/' T, 5o _"1?;;" " 150 1

+
Fig. 2. Graphical representation of function (9). Abscissae: light intensities I,
ordinates: assimilation rate F. The curve A’ABPB’ represents the function (9)
(or (31)). It has, however, a physiological significance only along the arch AB.
The tangents OA and BC to the curve at the points A and B correspond to
the assimilation rates for light intensities below I, or above l; =Iekd, Thus the
curve OABC represents the assimilation rate in relation to the light inten-
sity. In the graph the coordinates of the points A and B are I, =1, =20.
F, = 40; Iz = 100; Fp = 80,47. If the function (9) takes the form (31) the values
of the parameters are: p =10,2, q = 0,01, r = 1,30103, Mr = 2,99573, m (angular
coefficient of the tangent OA) — 2.
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It can be shown that the values of p, g and r are calculable from
the experimental data, which is done with more details in part IV.
For the moment it will suffice to state that there are two slightly
different ways for utilizing these data. In the first only the coordi-
nates of the points lying on the arch AB are used for calculating the
parameters p, g, 7. Then by comparing together the observed and the
calculated values the agreement between the theoretical deductions
and the experimental results can be checked. Moreover from the
equations (11), (12), (25) and (26) it is possible to find the equations
of the tangents OA and BC at the points 4 and B (fig. 2 and 3)
and compare the values of their coefficients with the value calculated
from the corresponding experimental data. A good agreement is
a further corroboration of the theory.

In the second way of utilizing the experimental data first the
equations of the lines OA and BC are found from these data, then
the equation of the curve of the form (31) or (33) passing through
given points and tangent to OA and BC is calculated and finally the

—1

6o

40

20

e 50 ' loo 150 ¢

Fig. 3. Graphical representation of function (23). Abscissae: carbon dioxyde
concentration ¢, ordinates: assimilation rate F, 'Only the arch AB of the
curve A’ABB’ has physiological significance. For carbon dioxyde concen-
trations below ¢, = ¢ e-kd or above cy = ¢, the tangents OA and BC to
the curve at the points A and B correspond to the assimilation rate. Thus the
dependence of the assimilation rate upon the carbon dioxyde concentration
is represented by the curve OABC. In the graph the coordinates of points
A and B are: ¢, = 20, Fy = 3210; ¢y = ¢, = 100, Fy = 80. The value of
the parameters of the modified form (33) of function (23) are: p = 1, @ = ¢, =
= 20, r = 2, Mr = 4,60517, m = 1,6005.
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corresponding values of the calculated and observed ordinates arc
compared.

Only a part of the available evidence is presented here as a ve
rification of our theoretical deductions. In choosing the evidence
preference was given to experiments based on a greater number of
simultaneous determinations of F' and I or F and ¢, and presenting
little scatter. Since the number of researches on the action of the
CO, concentration on the assimilation rate is small there are only
a few examples concerning the function (33) F = f(c). It can be seen
from the tables and the graphs® that the agreement between the
theory and the experimental results is good and is not limited to
algal suspensions but also includes higher water plants and even
leaves of land plants (cucumber). It is particularly apparent that
a) the experimental data lying on the arch AB show only slight de-
viations from the calculated values, (b) the observed (m,) and the cal-
culated (m.) values of the angular coefficients of the tangent OA do

€. Col. “
e
¥
F
300
- 200
i C. vir, o
/,..—--""‘_-_-
_______E_-_L.Y_?_-___—ﬂ——ﬂ-'ls"
L LE
C. ell. )
/’,/5-——-—""
2oarloo
-]
loo4
loof50
d 5 T 4o Bo ' Bs  1do ' 12c ' 130 ' 16o ' 1bo I

Fig. 4. Graphical representation of the data of tables 1—4: Chlorella vulgaris,
var. viridis; Chl. vulgaris, Columbia strain; Chl. pyrenoidose; Chl. ellipsoidea
(Winok ur 1948). Abscissae: light intensities in meter candles x 100:
ordinates: assimilation rate in cmm O, per hour. At right scale for Chl. vulgaris,
Columbia strain and Chl. pyrenoidosa; at left for Chl. viridis and Chl. ellipsoidea.

* In the graphs 4—7 the circles represent the experimental data, the
black dots the transition points A and B; the curves are the theoretical curves
of best fit corresponding to equations (31) or (33).
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not present greater discrepancies, c¢) the strict proportionality between
the assimilation rate F and I or ¢ for feeble light intensities I or small
CO, concentrations c, foreseen by our theory, is in agreement with the
experimental evidence, d) in most cases the constancy of the assimi-
lation rate for high light intensities or CO, concentrations, also
foreseen by our theory, is confirmed by experience.

200,
q
1 Cab.
r.
) ]
1501
4 Cab. o
o
So0]
lood 5 cacs . s T
] 4o0
& O
3ood
50 2001
loof
S0 loo 150 200
0 5o 1lco 150 200 230 500 | 350 4oo 1.

Fig. 5. Graphical representation of the data of tables 7, 8 and 12; Cabomba
caroliniana (Smith 1937) and Cucumis sativus (Gabrielsen 1934).
Abscissae: upper scale: light intensities in lux x 100; lower scale in lux x 10.
Ordinates: emm O, per hour (Cabomba), mg CO, per hour and 50 em® leaf
surface (Cucumis). At left scale for Cabomba, at right for Cucumis.

In our opinion the good agreement found between our theore-
tical deductions and the experimental results constitutes supplemen-
tary evidence supporting the validity of the fundamental assumptions,
i. e. Blackmann’s principle of limiting factors, on which our de-
ductions are based. In the light of these deductions the smooth expe-
rimental curves appearing instead of two intersecting segments
required by Blackmann's scheme, are not deviations from the prin-
ciple of limiting factors (as assumed by numerous writers), but are
a necessary consequence of the said principle.

Considering that the light employed in the different experi-
ments was not monochromatic but consisted of a mixture of rays of
different wave lengths (,,white light"), the good agreement between
the theory and the experimental results is somewhat unexpected.
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One would rather expect that the inequal absorption of the different
radiations by the assimilatory pigments would lead to noticeable
deviations from the theory. However, we may note that not the
absorption as such but the photochemical efficiency of the different
radiations is responsible for the rate of the carbon dioxyde assimi-
lation. Researches on the dependence of quantum yield on the wave

¥ El.
S04 loo
T
Pot.
404 8o
304 -60
20 40
1o 20
o N 200 400 = 600 1 8oo

Fig. 6. Graphical representation of the data of tables 9 and 10: Elodea ca-
nadensis and Potamogeton sp. (G 6r s ki 1929). Abscissae: light intensities
in arbitrary units, ordinates arbitrary units of oxygen ver min.

length (Warburg 1923, Moore and Duggar 1949)
have shown that this yield varies but sligthly with the wave length
and this explains the satisfactory agreement between theory and
experiment found for white light. It is true that in the light that
penetrates into the suspension not only its intensity but also its com-
position undergoes a change. In most cases however, this change can
be neglected as it has only a small effect on the photosynthetic
efficiency, the only thing that really matters being the gradual
decrease of the light intensity in the suspension.

However, the greater discrepancies observed sometimes (for
inst. table 2 and graph 4) for high light intensities (the experimental
values being greater than the expected) are probably attributable to
the inequal absorption and the photochemical efficiency of the diffe-
rent radiations forming the white light. The increase in F observed
when the light intensity is increased much above the value Ig =/ exq
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(the abscissa of point B) is presumably due to the fact that this increa-
se supplies the higher layers of the suspension with radiations which,
owing to strong absorption, do not normally reach these layers. The
radiations in question are probably the strongly absorbed and pho-
tosynthetically very efficient red rays.

1409 sab.l °
}
¥
Cab.2
+ 300
loo o
& soof F
e + 20c
Zocd
5d
200
F Loc
loei
s ™ ' loes . | 2000 e ' Jobo

Fig. 7. Graphical representation of the data of tables 15, 16, 17: Cabomba ca-

roliniana (S m it h 1937) and Hydrilla verticillata (B o s e 1924). Abscis-

sae: CO, concentration in mols per liter x 10-*> or mg per liter (Hydrilla)

ordinates: cmm O, per hour. At left scale for Cabomba 1, at right for Cabomba
2 and Hydrilla.

Contrary to appearance there is no good agreement between
theory and Warburgs and Harder’s results recorded in
tables 14 and 18. The calculation of the parameters leads to negative
values of g which means that the light intensity is the limiting
factor even for minimal carbon dioxyde concentrations. This con-
clusion is however incompatible with the principle of limiting factors.
As a probable cause of this discrepancy we may point out the fact
that in both cases the CO, concentrations are expressed in terras
of bicarbonate concentration’, and it is known that the CO, concen-
tration of bicarbonate solutions does not increase strictly proportin-
nally to the bicarbonate concentration. It is unfortunate that owing
to the lack of more ample data it is impossible to verify the validity
of function (23) for algal suspensions.

*In Warburgs paper the CO, concentrations were calculated from
picarbonate concentrations.
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The previous deductions have shown that the curves represen-
ting the assimilation rate in relation to the light intensity or the
carbon dioxyde concentration are formed by two segments con-
nected by an arch. Let us now concentrate our attention on the factors
upon which depends the length of the arch AB. The answer is given
by formulas (10) and (24) indicating the values of the coordinates
of the points A and B. The distances between the end points of thc
abscissae of A and B are:

D= I,ekd — |, = I;(ekd —1) for the function (9) I'=[([).

D=c,—cye*=c,(1—e*),, ,, . (23) I'=[(c).

In these expressions e*? is always =1, k (the absorption constant)
and d (the thickness of the algal layer) being two positive constants.
It follows from these expressions that the length of the arch AB
will decrease with k or d, i. e. with the density of the suspension or
its thickness. For thin suspensions of small density the curves cor-
responding to F = f(I) or F = f(c) should consist of two segments
connected by a very short arch. This is indeed the result obtained by
van den Honert (1930) and van der Paauw
(1932) in their study on the action of carbon dioxyde concentrations
on photosynthesis. The assimilating layer, formed by the filamentous
alga Hormidium was very thin, being only one cell thick. It must
however be pointed out that in the same experiments, with light
as the changing factor, the arch AB was much longer.

TABLES 1-—18

In the columns 1 and 2 are recorded the experimental data, viz. the light
intensity or the carbon dioxyde concentration and the assimilation rate,
extracted from papers of different writers.

Column 3 gives the corresponding values of the assimilation rate cal-
culated by means of functions (31) and (33).

I — light intensity, I, = I, —transition value, (abscissa of point A), Iz —
abscissa of point B (see fig. 2).

¢ — carbon dioxyde concentration, (', and (,'B —= (), — abscissae of points
A and B (see fig. 3).

F, and F, — observed and calculated values of the assimilation rate F.

m, and m, — observed and calculated values of the angular coefficient of
the tangent at the point A.

a. u. — arbitrary units,

mc. — meter candles,

p., q, r — see formulas (30) and (32) of the text.
(The data of table 17 are the sum of two similar series)
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1

Chlorella vulgaris var. viridis
(Winokur 1948)

I F, F
AL emm 0,/h
x 100
7.4 39,3 35,1
I, 163 79,8
20 92,4 93,4
39 1427 141,4
68 170,3 171,9
108 187,0 186,3
I, 1308 187,9
184 191,0 »
267 194,7 "
516 188,7 .
818 164,3

p = 0,0191275
g = 0,0076471 ,

r = 1,22607
mg = 5,31
m, =4,

3

Chlorella pyrencidosa
(Winokur 1948)

/ F, F,
e cmm 0, h
x 100
74 423 46,2
b 11,2 — 70,0
17 95,3 98,6
36 145,7 147,0
68 185,0 181,8
112 200,3 201,8
188 2137 210,7
I, 190,8 —_ N
267 216,3 ”

p = 0,0134446
¢ = 0,0052416
r=1,05021
m, == 5,72
m, = 6,24

2

Chlorella vulgaris
(Columbia, Winokur 1948)

I Fo F,
e cmm 0,/h
x 100
7 69,4 69,3
I, 134 — 132,4
20 186,4 184,2
31 233,3 236,4
40 2648 263,7
69 303,3 300,7
86 326,3 324,1
116 333,3 333,9
Iy 129 334,7
184 348.6
267 354,6 i
516 330,7 55
818 287,17

p = 0,00677048
q = 0,00775265

r=1,12613
m, = 0,992
m, = 0,99
4

Chlorella ellipsoidea
(Winokur 1948)

mc. F, K.
x 100
7 48,0 45,1
I, 134 = 91,5
17 100,3 102,7
36 176,7 166,8
68 207,7 211,7
116 228,3 236,9
I, 169,7 - 245,4
188 248,3 .
267 245,7

p = 0,00995815
q = 0,00589345

r=117713
m, = 6,48
m, = 6,09
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5

Chlorella sp. (Warburg 1919)

I Fo F,
a. u. cmm 0,h
1 45 41,3
/, 184 - 76,3
2 82 82,4
4 135 133,7
7,1 172 173,6
16 220 219,8
1y 39,07 2439
45 240
p = 0,012538
q = 0,025597
r = 0,26447
m, = 41,3
m, =45
7
Cabomba caroliniana
(Smith 1937)
! F, ¥,
mc cmm 0.k
x 10
1,66 2,44 2,511
4,07 5,84 6,16
17,4 27.4 26.3
331 47.4 50,6
1, 48,1 72,8
63,1 91,3 92,1
118 136 1445
219 165 166,5
417 186 185,4
482 = 186,2
Iy 1230 193
2820 192

p = 0,0123705
q = 0,0020747
r = 1,68267
m, = 1,504
m, = 1,512

F. Gorski

6

Fontinatis sp. (Harder 1920)

I F, F,
a. u. ml n/10 thiosulf.
0,67 1,16 1,13
[, 1,93 - 3,27
2 3,30 3,35
6 7,00 6,84
18 9,88 10,04
36 11,74 11,48
Iy 90.9 12,95
p o 0,3021
¢ — 0,01104
r = 0,28596
i, = 1,733
m, = 1,695
8

Cabomba caroliniana

(Smith 1937

! F, K,
mec.
=10 cmm 0.'h
1,66 2,52 1,94
4,07 5,56 4,76
17,4 21,1 25,8
33,1 29,4 38,8
/1, 60,1 70,4
63,1 74,0 73,9
118 112 112,1
219 131 133,8
Iy 2656 135,4
417 138
1230 139
2820 147
p — 0,010978
g — 0,003765
r—1,7788
m, = 1,2
m, = 1,17
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Elodea canadensis
(Gorski 1929)

Limiting factors

/ F, 4
a. u. a. u.
47,7 7,8 1,7
72,5 12,0 11,8
103 17,2 16,7
134 224 21,8
181 29,9 29,4
1, 183,2 — 29,8
240 37,5 37,4
306 43,3 43,5
403 49,4 49,1
497 52,5 52,4
Iy, 736 55,1 55.1
P = 0,0025241
q=0,0013599
r = 2,26288
m, = 0,1654
m,. = 0,1624
11
Hydrilla verticillata
(Bose 1924)
I Fy E,
lux
S5 X0 ecmm 0, h
3 1 87
4 102,8 116
5 1314 145
I, 66 - 191,2
75 200,2 215,6
10 265,6 265,8
15 3249 325,2
20 355,5 355,9
30 375,7 376,1
Iy 31 376,3
= 0,0041268
q=0,0322162
r =0,81874
m, = 26,1
m, = 29,02

10

Potamogeton lucens
(Gorski 1929)

1 F,
a. u. a. u.
44,4 11,7
69,4 26,1
100 38,6
/, 107,9
123 46,1
156 57,2
204 66,5
278 73,6
400 81,6
494 86,4
Iy 5754 -
p — 0,019507
q =0,0017378
r = 2,0331
m, = 0,378
m, = 0,386
12

Cucumis sativus
(Gabrielsen 1934)

[ K
lux v
% 100 mg ('O,/h .50
25 30
5,0 63
10 149,5
I, 109 —
25 252
50 364
75 362,5
100 391
150 418,5
Iy 1831 -
200 421,5
300 326
p = 0,006712
q = 0,005462
r = 1,03835
m, = 13,18

m, = 12,83

17,1
26,8
38,0
41,7
47,0
56,3
65,7
75,0
82,8
85,2
85.8

cm*-

32,1

64,2
128,3
140,1
252,0
334,8
374,9
397,4
417,2
420,0
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13

Hormidium sp.
(v. d. Honert 1930)

1 o
a. u. a. u.
1 28
I, 1,81
1,98 56
3,08 76
4,18 89
6,18 100
8,89
Iy 132 104
p = 0,0154
g = 0,1125
r = 0,25642
m, = 28,1
m, = 28.11
15

Cabomba caroliniana
{Smith 1937)

"
mol/l
x107P

22,9

448
86,7
102,2
205
375
785

1310

c, 1459

2900
10000

Ca

p -
q
r=
m, =
m,

F

cmm 0,/h

5,5
11,0
23,2

49,2

75,1
115
131

136
138

10,22685

= 102,17

3,16399
0,251
0.259

28,1

55,9
71,1
85
99,7
103.5

F

5,9
11,6
22,4
26,4
49,2
76,1

111,8

131,8

132,1

F. Gorski
14
Fontinalis sp.
(Harder 1921)
c Fn 1‘,,
o KHCO; 1) 110 thiosult.
x 100
1 66 65,7
2 103 103,5
6 200 199.8
18 300 300,1
ly 205 — 3025
p o 0,06977
q = —0,56087
r-——1,31253
16
Hydrilla verticillata
(Bose 1926)

c F, F,
(’O‘_’ emm 0,/h
mg/l

18 1 70,9

25,5 99 100,4

38 150 149,6

48 195 189,0

cy 63 248 2480

88 336 330,8

138 426 426

¢, 192,3 - 456
228 456
p = 0,283636
q = 62,96
r= 228398
my = 3,96
m. = 3,94
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17 18
Cabomba caroliniana Chlorella sp.
(Smith 1939) (Warburg 1919)
c F, | c Fy K.
mol/l p mol/l .
2 10—5 cmm 0,/h <105 cmm 0,/h
44,8 21,8 22,4 5,3 29 31,2
cy 197 - 393 10 47 48,3
86,7 442 43,5 26 120 91,0
205 92,1 92,2 53 144 138,3
375 144,5 144,2 98 178 183,5
87 238 226,8 ¢, 1789 208,6
€, 2112 — 310,7 230 202
2900 309 B 439 214
p - 654033 910 242
q - 79,69 p = 0873437
r 3,3247 ’ q = -3,32936
m, — 0,498 r—= 2,25255
m, = 0,501
v

In this section the methods devised for the calculation of the
parameters p, ¢» v are presented in some detail.

1. The first is a least square method. The experimental data
consist of n pairs of values I,, F,, I,, F,, .... I,, F. from which all the
values corresponding to the segments OA and BC are eliminated,
since they are not lying on the arch AB of the curve (31). The elimi-
nation is easily performed if the data are plotted on a graph. Values
showing great deviations from the rest should be discarded. The
least square treatment consists in finding values for p, g, r which
make the sum

S(pF +ql + Mr  Mlogl—1)=58(%

a minimum. This condition is equivalent to

Vo8
9 So S12(pF + ql + Mr—Mlogl —1)F| =10
— pSF* + qSFI -+ MrSF — MSFlogl  SF =0
d)‘s”‘" —S|2(pl + ql + Mr—Mlogl —1)I| =0
dqg

— pSFI + ¢SI? + MrSI— MSTlogl — SI =0
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“T'd*'”." —S12(pF + gl + Mr— Miog | — 1) M|=0
h

= pSF + qST + Mnr— MSlog | — n = 0.

From the above equations, which are linear with respec£ to p, g, 1,
these parameters are calculated by means of determinants. For this
purpose we shall write the equations as follows:
pSE? + qSFI + MrSF = MSFlog 1 + SF
pSFI + qSI* 4+ MrST = MSllog ! + SI (34)
pSE + gSI + Mnr = MSlogl + n
We will show that

oMb, o,
P="p 9=

b 1 (35)
D M

where
D= nSF2.81* + 285F .S1 .SFI) — (SF2. 82 1 + $* I . SI* + nS? F1).
Dy =(SFI.SI —SF .SI*)Slogl + (nSI1* — S21)SF log | +
+ (SF.SI' nSFI)SIlogl,

Dy = (SF.SKI—SF.SI)Slog I + (SF.SI—nSFI)SFlog I 4
+ (nSF*— S?*F) Sl log I,
D, = (SF*.S1* — S*FI)Slog ! + (SFI.SI- SF.SI?) SFlog | +
+ (SF.SFI— SF2.SI)SI log .
Indeed, if we denote by D the determinant

SF* SFI SF |
D=|SFI SI* SI

SF SI n
the value of p is given by
MSF1gl + SF SFISF, SKigl SKI SF Sk SkISEF
M \MSIg I+ SISI*SI| M| Sligl SI* SI |+ ST SI® SI |
_IMS 1gl+n SI n'  ISigl SI n | n SIn

DM D
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The second determinant in the numerator is nil since it has two
identical columns. The value of the first, denoted by D, , is given by
the first formula (35), thus p = MD, /D. In the same way it can be
shown that ¢ = MD, /D, where

SE2SF1gISF|
SFISIgISI |
SF S 1gin

D,=

The calculation of D, is slightly different:
SF2SKI MSF 1g I + SF {SF2SFISF1gl| |SF?SFISF|
SFISI? MSI 1g I + S1 .IrféSF[ SI* SI 1g 1|+ |SFISI® SI "

_ISE SI MS 1gl+n |SF SI S 1g[5 SF SI n
o MD B MD

In the numerator the second determinant is equal to D, hence, if we
denote the first by D, ,we obain:

r=MD:+D D LD | 4409
MD D M D

Similar expressions are found for the parameters p, g, r ap-
pearing in function (33). Since the calculations are the same we
will limit ourselves to quote the principal steps. To the relations (34)
correspond the equations:

pSI?* + gSF — MrSFe = SFc— MSFc log ¢
pSF + gqn — MrSc¢ =S8c¢ — MSclog ¢ (36)
pSFec+ qSe¢ — MrSc? = Sc¢? — MSc?log ¢

and from them the parameters p, q, r are calculated:

P MD, , q= MD, , p— D 1 (37)
D D D M

where
D = (nSF2. Sc? 4 2 SF . Sc . SFe) — (SF2. S*c + S$2F . Sc¢* + nS?Fe),

D, = (SF .Sc®*— Sc.SFc)Sclog ¢ + (S2¢ — nSc?) SFcloge +
+ (nSFe—SF . Sc) Sclog ¢,
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D, = (8*Fc — SF2. 8¢®) Sclog ¢ + (SF .S¢*— Se . SFe) SFeloge +
+ SE2. S¢— SF.SFe)Sclog e,

D, = (SF .SFc—SF?. S¢)Sclog ¢ + (SF.Se—nSFe) Ske log ¢+
+ (nSF*— S*F) Sc¢*log c .

2. If there are only 3 points (I,, F,, I, Fy, I,, F, or ci, Fi, c,, Fy
<3, Fy) on the arch AB the parameters are easily found by solving
the following sets of linear equations:

pF,4+ql, + Mr=Mlogl, + 1
pFo+ ql, + Mr=M1logl, + 1

pF; +ql,+ Mr=Mlogl, + 1
or
pF, + q— Mrc, = ¢, — Mec, log ¢,

pFs + q— Mrc, = c,— Mc, logc,
pF; + q— Mrc, = ¢,— Mc, logc,

The correponding curves must exactly fit the given points. It is
obvious that in this case the good agreement between the experimen-
tal results and the theory is a mathematical necessity and cannot be
considered as an evidence corroborating our theory.

3. If p, q, r are known it is possible to calculate:

a) the angular coefficient m. of the tangent y — mx at the
point A and compare it with the observed value m,,

b) the equation y = Fp = const. of the tangent at the point
B and to compare it with the observed value.

The value m. of the angular coefficient of the tangent at the
point A of curve (31) is by (15) and (30):

mo—4_ A _alali 1 ¢ (38)
k ket kI, kliek ply  p
or finally
—Mr __
-1—=ea“"""———“prnc +q and m, = ¢ 1. (39)

I p
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The observed value m, 1s found either from the formula m, = ‘Z‘—((f;:))

S(F/I)

n

or from the mean of the ratios F/I(m,= ), where I and [ refer

of course to pairs of experimental values lying on the segment OA.
The expected value of Fj is found by making in (31) I = 1/q,
indeed (30), 1/q is the abscissa Iz = I;e*® of the point B.

plg+ 1+ Mr=Mlogl/q+ 1
or

plk's— Mlogq + Mr=0.
The observed value of the constant in the equation y - const. is
Fpi+Fgs + oo + Fan

simply the mean - of all the experimental data
It

of F for which the abscissae are greater than the abscissa of the
point B. _

Similar calculations in the case F = f(c) are given below. The
equation of the tangent in A is y = bdc (25). Hence

m. = bd (40)
In this equality we must express b and d in terms of p, q. r. From
q= o (32) it follows that d = L lgn C"-, imwever, as Mr = Ignc,

ekd’ k q
and ¢, = e¥, we have:
oMr
s Ign = 1-(Mr-— Mlog q) .
k q k

From (32) it follows also that b = k/p, substituting in (40) the above
expressions we cbtain:

me = ir— ¥ logq or pm.+ Mlogq— Mr=0. (41)

r

To express Fy in terms of p, q- r we make ¢ = ¢, in (23). ¢, being
the abscissa of the point B (24), but as ¢, = e¥ we obtain:
pFg+ q— Mre¥r — ¥ — ¥ 1gn e¥'
and finally:
pFr+q—e¥ =0
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The observed values of m, and Fy are calculated from the experimen-
tal data in the same way as in the case FF = f(I).

4. In the preceding methods the experimental data correspon-
ding to the segments OA and BC were not used for the calculation of
P, q, r. It is, however, possible to do so when starting from the as-
sumption that the curve F = f(I) or F = f(c).

a) passes through one (or more) points lying on the arch AB.

b) is tangent to a given line y = ma passing through the origin

¢) is tangent to a given line y = const. parallel to the X-axis.
The following equations are equivalent to the above conditions:

for F'=f(I) for F'=f(c)
Pl +ql + Mr=Mlogl +1 pF 4 q— Mrc = c¢— Mclog ¢
Vli=e"" =pm +q pm + Mlogq— Mr =10
pFg+ Mlogq + Mr=0 pFp + q—eM =0

where I, ¢, F, Fp and m are known and p, q, r are the unknown para-
meters. Unfortunately there is no direct method for solving the above
equations and therefore the general procedure used in such cases
must be applied. It is however to cumbersome for practical purposes
and will not be presented here.

The calculations become much simpler if the experimental data
consist of Fg and the coordinates I, F, and I,, F, of two points lying
on the arch AB. The corresponding equations are

pl's + Mlogq + Mr =0
pF,+ql, + Mr=Mlogl, + 1 (42)
ply +ql, + Mr=Mlogl, + 1.
We substract the second and the third equation from the first
p(Fs—F,)+ Mlogq—ql,=—Mlog l,— 1
pFp—Fy) + Mlogq—ql,=— Mlog I, —1.
If the following abbreviations are introduced
y=Fy—F, and f[,=Fp— F, (43)
the equations become:
pfy + Mlogq—ql,=— Mlog I, — 1
pfs + Mlogq—ql,=— Mlogl,— 1.
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The two equations are multiplied, the first one by —f,, and the second
one by f,» and they are added together:

—pfifs— Mf,logq + foql, = Mf,1log I, + 1,
phif. + Mfilog g —f,qls=—Mf,log I, — /,
M(f,—Ff)logq +(fol, — [ 1) g=Ffs(Mlogl, +1) ~ f, (Mlog I, + 1)

The final equation has either two or one (double) real solutions or
no solutions at all. The solutions, if any, are readily found by succes-
sive approximations. A closer examination of the experimental data
shows which of the two solutions is the right one. When ¢ is known
p and r are immediately calculated from the second and third equa-
tion of the set (42).

A similar method applied to the set of equations

ply 4+ g—e¥ =0
pl, + q— Mrc, = ¢, — Mc, log ¢, (44)
pF, + q— Mre, = ¢, — Mc, log ¢,

leads to the equation

(fy —F) €M —(f, co—fy ¢;) Mr = fy ¢, (Mlog ¢, — 1)—f, ¢, (M log ¢, — 1),

where f, and f, have the same signification as in (43). Its solution is
facilitated if e, and Mr are replaced by ¢, and Mlog ¢, (32).

SUMMARY

This paper is an attempt to elucidate the causes of the well
known discrepancy appearing in photosynthesis between Blackmann’s
theory of limiting factors and the experimental results. It follows
from this theory that the curves F = f(I) and F = f(c) representing
the rate F of carbon dioxyde assimilation in relation to the light
intensity I or the carbon dioxyde concentration ¢ should have the
form of two intersecting segments. In reality the experimental curves
F = f(I) and F = f(c) consist of two short segments connected by
an arch of varying length and notably deviate from Blackmann’s
scheme. It is the aim of the present paper to demonstrate that the
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actual shapes of the curves F = f(I) and F = f(c) are a direct con-
sequence of the principle of limiting factors, provided that the distri-
bution of the light intensity in the assimilating plants or cells is
taken into account.

In the first section the dependence of the assimilation rate upon
the light intensity is examined with the help of a model formed by
an uniform algal suspension illuminated from below. It is assumed
that the intensity or the light pervading through the suspension di-
minishes according to Beer’s law. It can be shown that there exist
a certain level (transition level) dividing the suspension into two
parts: in the lower part light is the factor in excess while in the
upper part it plays the role of the limiting agent. Each part of the
suspension is decomposed in very thin layers and the assimilation
rate of each layer is calculated in conformity with the principle of
limiting factors (formulas (4) and (5)). Then the contributions of all
the layers are added and a function (formula (9)) relating the assimi-
lation rate to the light intensity is obstained. In the same manner,
(section II) the action of varying carbon dioxyde concentrations on
the assimilation rate is examined and a function expressing the
assimilation rate in relation to the carbon dioxyde concentration is
found (formula (23)).

In the third section the theoretical deductions are checked with
the experimental results drawn from various papers (by B o s e
Gabrielsen, Harder, van den Honert, Smith,
Warburg and Winokur) referring to the dependance of
the assimilation rate of algal suspensions and water plants upon
the light intensity or the carbon dioxyde concentration. In most
cases there is a satisfactory agreement between the theory and
the experimental results. From this agreement the inference is drawn
that the carbon dioxyde assimilation by green plants exactly con-
forms to the principle of limiting factors and that the actual shapes
of the functions F = f(I) and F = f(c) far from presenting deviations
form Blackmann’s theory are its consequence.

Finally in the last section the methods elaborated for the cal-
culation of the parameters appearing in functions (31) and (33).
F = f(I) and F = f(c), are presented in detail.

Laboratory of Plant Physiology, Jagellonian University,
Krakdéw, Poland.
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