Evaluation of Climate Change Impacts on the Geographic Distribution of Fritillaria imperialis L. (Liliaceae) (Turkey)

Aynur Demir, Fulya Aydin-Kandemir

Abstract


Fritillaria imperialis is a bulbous plant that has increased commercial value and contributes to rural development in Turkey. It is widely utilized in traditional medicine and pharmacy, and has great potential for use in modern pharmaceuticals in the future. As the effects of climate change on this plant have not been documented, this study aimed to understand how climate change might affect F. imperialis. The methodology of the study was divided into three steps: (i) database development, including the current distribution zones of F. imperialis and climatic parameters such as temperature and precipitation data; (ii) determination of the plant’s temperature and precipitation requirements; and (iii) Ecocrop’s plant climate suitability modeling (PCSM). As a result of the study, it was determined that climatic suitability would decrease below 20% in the plant’s current distribution area between 2,000 m and 3,000 m altitude. For the zones between 500–1,000 m altitude, the climatic suitability will be as high as 100%. Although there are zones where climatic suitability will increase by 2070, the general trend shows that suitability will decrease. This change in the plant ecosystem is explained by the decreased winter precipitation and snowfall but increased temperature and evaporation at higher altitudes. Fritillaria imperialis is expected to shift its geographic distribution to lower altitudes because of climate change.

Keywords


Ecocrop; plant climate suitability; geographic information systems

Full Text:

PDF XML (JATS)

References


Alexander, J. M., Kueffer, C., Daehler, C. C., Edwards, P. J., Pauchard, A., & Seipel, T. (2011). Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proceedings of the National Academy of Sciences of the United States of America, 108, 656–661. https://doi.org/10.1073/pnas.1013136108

Alp, Ş. (2006). Ters Lale Üreticileri Için El Kitabı [The handbook for tulip growers]. Doğal Çiçek Soğanları Derneği.

Alp, Ş., Arslan, N., & Koyuncu, M. (2009). Established forms of Fritillaria imperialis L. – A naturally growing species in Turkey. Pakistan Journal of Botany, 41(4), 1573–1576.

Al-Snafi, A. E. (2019). Fritillaria imperialis – A review. IOSR Journal of Pharmacy, 9(3), 47–51.

Asar, M., Yalçın, S., Yücel, G., Nadaroğlu, Y., & Erciyas, H. (2008). Zirai meteroloji [Agrometeorology]. T. C. Çevre ve Orman Bakanlığı Devlet Meteoroloji İşleri Genel Müdürlüğü. https://www.mgm.gov.tr/FILES/genel/kitaplar/zirai-meteoroloji.pdf

Atay, S. (1996). Soğanlı Bitkiler, Türkiye’den İhracatı Yapılan Türlerin Tanıtım ve Üretim Rehberi [Bulbous plants, promotion and production guide of species exported from Turkey]. Doğal Hayatı Koruma Derneği.

Aydın, F. (2015). Enerji bitkisi yetiştirilebilecek alanların Coğrafi Bilgi Sistemleri, uzaktan algılama ve Analitik Hiyerarşi Prosesi desteği ile tespiti [Geographic information systems (GIS), remote sensing and analytic hierarchy process (AHP)-based determination of suitable sites for energy crop cultivation] [Master’s thesis, Ege University]. CoHE Thesis Center. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp

Aydin, F., Erlat, E., & Türkeş, M. (2020). Impact of climate variability on the surface of Lake Tuz (Turkey), 1985–2016. Regional Environmental Change, 20, Article 68. https://doi.org/10.1007/s10113-020-01656-z

Aydın, F., & Sarptaş, H. (2018). İklim değişikliğinin bitki yetiştiriciliğine etkisi: model bitkiler ile Türkiye durumu [The impact of the climate change to crop cultivation: The case study with model crops for Turkey]. Pamukkale University Journal of Engineering Sciences, 24(3), 512–521. https://doi.org/10.5505/pajes.2017.37880

Bemmels, J. G., & Anderson, J. T. (2019). Climate change shifts natural selection and the adaptive potential of the perennial forb Boechera stricta in the Rocky Mountains. Evolution, 73(11), 2247–2262. https://doi.org/10.1111/evo.13854

Braunisch, V., Patthey, P., & Arlettaz, R. (2016). Where to combat shrub encroachment in alpine timberline ecosystems: Combining remotely-sensed vegetation information with species habitat modelling. PLoS ONE, 11, Article e0164318. https://doi.org/10.1371/journal.pone.0164318

Dahlman, L. (2018, September 21). Climate change: Spring snow cover. https://snowbrains.com/staging/noaa-spring-snow-disappearing-earlier/

Davis, P. H. (Ed.). (1964–1985). Flora of Turkey and the East Aegean Islands (Vols. 1–9). Edinburgh University Press.

Demir, A. (2009). Küresel İklim Değişikliğinin Biyolojik Çeşitlilik ve Ekosistem Kaynakları Üzerine Etkisi [The effects of global climate change on biodiversity and ecosystems resources]. Ankara Üniversitesi Çevrebilimleri Dergisi, 1(2), 37–54. https://doi.org/10.1501/Csaum_0000000013

Demir, A. (2019). Türkiye’de Fritillaria imperialis’ in Ekonomik Değer Analizi [Economic value analysis of Fritillaria imperialis in Turkey]. Biological Diversity and Conservation, 12(3), 103–110. https://doi.org/10.5505/biodicon.2019.50820

Denhez, F. (2007). Küresel Isınma Atlası [Global warming atlas]. NTV Yayınları.

Earthdata Search. (2022). Earthdata. Retrieved March 19, 2021, from https://search.earthdata.nasa.gov/

Eastman, J. R. (2016). Terrset manual. Clark University.

ecocrop: Ecocrop model. (2022). RDocumentation. https://www.rdocumentation.org/packages/dismo/versions/1.3-3/topics/ecocrop

Eitzinger, A., Giang, L., Lefroy, R., Laderach, P., & Carmona, S. (2014). Overview of climate variability and likely climate change impacts on agriculture across the Greater Mekong Sub-region (GMS) [PowerPoint slides]. SlideShare. Retrieved August 28, 2022, from https://www.slideshare.net/ciatdapa/workshop-crop-suitability-modeling-gms

Environmental Systems Research Institute. (2022). ArcGIS pro [Computer software]. Retrieved on June 15, 2021, from https://www.arcgis.com/

Eppich, B., Dede, L., Ferenczy, A., Garamvölgyi, Á., Horváth, L., Isépy, I., Priszter, S., & Hufnagel, L. (2009). Climatic effects on the phenology of geophytes. Applied Ecology and Environmental Research, 7(3), 253–266. https://doi.org/10.15666/aeer/0703_253266

Erlat, E. (2014). İklim Sistemi ve İklim Değişmeleri [Climate system and climate changes] (5th ed.). Ege Üniversitesi Yayınları.

Erlat, E., Türkeş, M., & Aydin-Kandemir, F. (2021). Observed changes and trends in heatwave characteristics in Turkey since 1950. Theoretical and Applied Climatology, 145(1), 137–157. https://doi.org/10.1007/s00704-021-03620-1

Fitzpatrick, S. (1994). Nectar-feeding by suburban blue tits: Contribution to the diet in spring. Bird Study, 41(2), 136–145. https://doi.org/10.1080/00063659409477210

Franklin, J., Serra-Diaz, J. M., Syphard, A. D., & Regan, H. M. (2016). Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences of the United States of America, 113, 3725–3734. https://doi.org/10.1073/pnas.1519911113

Haşlak, O. (2007). Küresel ısınmanın toprak ve bitkiler üzerine etkileri [Effects of global warming on soil and plants]. In S. Gören (Ed.), Üniversite Öğrencileri 2. Çevre Sorunları Kongresi 16–18 Mayıs 2007 [2nd Environmental Problems Congress, May 16–18, 2007] (pp. 33–38). Fatih Üniversitesi.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/joc.1276

Hof, C. (2010). Species distributions and climate change: Current patterns and future scenarios for biodiversity. Museum Tusculanum.

Işik, K. (2011). Rare and endemic species: Why are they prone to extinction? Turkish Journal of Botany, 35, 411–417. https://doi.org/10.3906/bot-1012-90

Khodorova, V. N., & Boitel-Conti, M. (2013). The role of temperature in the growth and flowering of geophytes. Plants, 2, 699–711. https://doi.org/10.3390/plants2040699

Kim, H., Hyun, S. W., Hoogenboom, G., Porter, C. H., & Kim, K. S. (2018). Fuzzy union to assess climate suitability of annual ryegrass (Lolium multiflorum), Alfalfa (Medicago sativa) and sorghum (Sorghum bicolor). Scientific Reports, 8, Article 10220. https://doi.org/10.1038/s41598-018-28291-3

Lane, A., & Jarvis, A. (2007). Changes in climate will modify the geography of crop suitability: Agricultural biodiversity can help with adaptation. SAT eJournal, 4(1), 1–12.

Met Office. (2018). UKCP18 guidance: Representative concentration pathways. https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp18-guidance---representative-concentration-pathways.pdf

Mouillot, D., Bellwood, D. R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., Kulbicki, M., Lavergne, S., Lavorel, S., Monquet, N., Paine, C. E., Renaud, J., & Thuiller, W. (2013). Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biology, 11(5), Article e1001569. https://doi.org/10.1371/journal.pbio.1001569

Öztürk, K. (2002). Küresel iklim değişikliği ve Türkiye’ye olası etkileri [Global climate change and its possible effects on Turkey]. G. Ü. Gazi Eğitim Fakültesi Dergisi, 22(1), 47–65.

Pawar-Patil, V., & Mali, S. P. (2015). Ecocrop model approach for agro-climatic sugarcane crop suitability in Bhogawati River basin of Kolhapur District, Maharashtra, India. Universal Journal of Environmental Research and Technology, 5(5), 259–264.

Tekşen, M., & Aytaç, Z. (2011). The revision of Fritillaria L. (Liliaceae) genus in the Mediterranean region (Turkey). Turkish Journal of Botany, 35, 447–478. https://doi.org/10.3906/bot-0812-9

Tekşen, M., & Aytaç, Z. (2014). The revision of Fritillaria L. (Liliaceae) genus in the regions in Turkey, except the Mediterranean region. International Research Journal of Biological Sciences, 9, 34–51.

Thakur, D., & Chawla, A. (2019). Functional diversity along elevational gradients in the high altitude vegetation of the western Himalaya. Biodiversity Conservation, 28, 1977–1996. https://doi.org/10.1007/s10531-019-01728-5

Trivedi, M. R., Browne, M. K., Berry, P. M., Dawson, T. P., & Morecroft, M. D. (2007). Projecting climate change impacts on mountain snow cover in Central Scotland from historical patterns. Arctic, Antarctic, and Alpine Research, 39(3), 488–499. https://doi.org/csq6hx

Türkeş, M. (2016). Genel Klimatoloji: Atmosfer, Hava ve İklimin Temelleri [General climatology: Fundamentals of atmosphere, weather, and climate]. Kriter.

Türkeş, M., Sümer, U. M., & Çetiner, G. (2000). Küresel iklim değişikliği ve olası etkileri [Global climate change and its possible effects]. Çevre Bakanlığı.

Zafarian, E., Ebrahimi, A., Boroujeni, A. E., & Surki, A. A. (2019). Required growing degree-days (GDDs) for each phenological stage of Fritillaria imperialis. Journal of Rangeland Science, 9(1), 62–72.

Zeylanov, Y., Kumlay, M. A., Koç, A., & Gökçek, B. (2012). Ters lale (Fritillaria) türlerinin Gaziantep Büyükşehir Belediyesi botanik bahçesine introdüksiyonu [Types of reverse tulip introduced to Gaziantep Metropolitan Municipality Botanical Garden]. Azerbeycan Milli Elmlar Akademiyası Merkezi Nebatat Bağının Eserleri, 10, 86–95.




DOI: https://doi.org/10.5586/asbp.919

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society