Biotechnology of the Tree Fern Cyathea smithii Hook. f. (Soft Tree Fern, Katote). I. Morphogenic Potential of Shoot Apical Dome, Plant Regeneration, and Nuclear DNA Content of Regenerants in the Presence of TDZ and NAA

Jan J. Rybczyński, Małgorzata Podwyszyńska, Wojciech Tomaszewicz, Anna Mikuła


In nature, the tree fern Cyathea smithii lacks meristem multiplication; therefore, a system of vegetative propagation in vitro is required to protect the species’ gene resources. Experiments were carried out on the apical dome of C. smithii J. D. Hooker (soft tree fern, Katote) to determine its morphogenic potential using 1/2 strength of Murashige and Skoog medium containing various concentration of thidiazuron [TDZ; 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea)] (0.01, 0.1, 1.0, and 5.0 µM) supplemented with naphthalene acetic acid (0.25 µM). The success of the treatments was determined by the number of regenerants per explant, level of regenerant development, and nuclear DNA content in the green mesophyll cells. The highest number of regenerants was achieved in the presence of 5.0 µM TDZ and the lowest at 0.01 µM TDZ. The quality of development of the regenerants was expressed as the number of formed leaves and their growth per individual plantlet. The highest growth and development of regenerants occurred at the lowest concentration of TDZ (0.01 µM), and the lowest growth and development of regenerants occurred at the highest TDZ concentration (5.0 µM); however, the number of regenerants showed the opposite. In gametophytes, the nuclear DNA content ranged from 4.74–4.78 pg representing haploid level, whereas in sporophytes it ranged from 8.45–9.13 pg and was diploid. These results prove the stability of the regenerant genome after TDZ treatment of meristematic cells.


description of regenerants; flow cytometry; gametophyte; plant multiplication; sporophyte; vegetative propagation; morphogenic potential

Full Text:



Ambrose, B. A., & Vasco, A. (2016). Bringing the multicellular fen meristem into focus. New Phytologist, 210, 790–793.

Avila-Pérez, M. C. R., White-Olascoaga, L., & Arzate-Fernández, A. M. (2011). In vitro regeneration of leatherleaf fern [Rumohra adiantiformis (G. Forst.) Ching]. American Fern Journal, 101, 25–35.

Bainard, J. D., Henry, T. A., Bainard, L. D., & Newmaster, S. G. (2011). DNA content variation in monilophytes and lycophytes: Large genomes that are not endopolyploid. Chromosome Research, 19, 763–775.

Banerjee, R. D., & Sen, S. P. (1980). Antibiotic activity of pteridophytes. Economic Botany, 34(3), 284–298.

Baniaga, A. E., & Barker, M. S. (2019). Nuclear genome size is positively correlated with median LTR-RT insertion time in fern and lycophyte genomes. American Fern Journal, 109, 248–266.

Bennett, M. D., & Leitch, I. J. (2001). Nuclear DNA amounts in pteridophytes. Annals of Botany, 87, 335–345.

Bharti, M. (2018). Studies on phytochemical analysis and screening for active compounds in some ferns of Ranchi and Latehar districts. International Journal of Academic Research and Development, 3, 33–41.

Chang, Z.-X., Kuo, L.-Y., Lu, P.-F., & Huang, Y. M. (2020). New addition to the Asplenium normale complex (Aspleniaceae): An endemic forma in Taiwan. Taiwania, 65, 253–260.

Chhabra, G., Chaudhary, D., Varma, M., Sainger, M., & Jaiwal, P. K. (2008). TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.). Physiology and Molecular Biology Plants, 14, 347–353.

Clark, J., Hidalgo, O., Pellicer, J., Liu, H., Marquardt, J., Robert, Y., Christenhusz, M., Zhang, S., Gibby, M., Laitch, I. J., & Schneider, H. (2016). Genome evolution of ferns: Evidence for relative stasis of genome size across the fern phylogeny. New Phytologist, 210, 1072–1082.

Das, S., Choundhury, M. D., & Mazumder, P. B. (2013). In vitro propagation of Cyathea gigantea (Wall Ex. Hook) – A tree fern. International Journal of Recent Scientific Research, 4, 221–224.

Doležel, J., & Bartoš, J. (2005). Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany, 95, 99–110.

Dyer, R. J., Pellicer, V., Savolainen, V., Leitch, I. J., & Schneider, H. (2013). Genome size expansion and the relationship between nuclear DNA content and spore size in the Asplenium monanthes fern complex (Aspleniaceae). BMC Plant Biology, 13, Article 219.

Galbraith, D. W., Lambert, G. M., Macas, J., & Doležel, J. (1997). Analysis of nuclear DNA content and ploidy in higher plants. Current Protocols in Cytometry, 2, 7.6.1–7.6.22.

Goller, K., & Rybczyński, J. J. (1995). In vitro culture used for woody fern Cyathea australis (R. Br) Domin vegetative propagation. Acta Societatis Botanicorum Poloniae, 64, 13–17.

Goller, K., & Rybczyński, J. J. (2007). Gametophyte and sporophyte of tree ferns in vitro culture. Acta Societatis Botanicorum Poloniae, 76, 193–199.

Huckaby, C. S., & Raghavan, V. (1981). Spore germination patterns in the ferns, Cyathea and Dicksonia. Annals of Botany, 47, 397–403.

Imaichi, R. (2013). A new classification of the gametophyte development of homosporous ferns, focusing on meristem behavior. Fern Gazette, 19, 141–156.

Johnson, G. P., & Renzaglia, K. S. (2008). Embryology of Ceratopteris richardii (Pteridaceae, tribe Ceratopterideae), with emphasis on placental development. Journal of Plant Research, 121, 581–592.

Jones, D. L. (1987). Encyclopedia of ferns. Timber Press.

Kuriyama, A., Kobayashi, T., & Maeda, M. (2004). Production of sporophytic plants of Cyathea lepifera, a tree fern, from in vitro cultured gametophyte. Journal of Japan Horticultural Science, 73, 140–142.

Large, M. F., & Braggins, J. E. (2004). Tree ferns. Timber Press.

Liao, Y. K., & Wu, Y. H. (2011). In vitro propagation of Platycerium bifurcatum (Cav.) C. Chr. via green globular body initiation. Botanical Studies, 52, 455–463.

Loureiro, J., Trávníček, P., Rauchová, J., Urfus, T., Vít, P., Štech, M., Castro, S., & Suda, J. (2010). The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia, 82, 3–21.

Lysak, M. A., & Doležel, J. (1998). Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia, 51, 123–132.

Malabadi, R. B., Mulgund, G. S., Nataraja, K., & Kumar, S. V. (2011). Induction of somatic embryogenesis in different varieties of sugarcane (Saccharam officinarum L.). Research in Plant Biology, 1, 39–48.

Mikuła, A., Jata, K., & Rybczyński, J. J. (2009). Cryopreservation strategies for Cyathea australis (R. BR.) Domin. CryoLetters, 30(6), 429–439.

Mikuła, A., Pożoga, M., Tomiczak, K., & Rybczyński, J. J. (2015). Somatic embryogenesis in ferns: A new experimental system. Plant Cell Reports, 34, 783–794.

Moura, R., Simões-Costa, M. C., Garcia, J., Silva, M. J., & Duarte, M. C. (2012). In vitro culture of tree fern spores from Cyatheaceae and Dicksoniaceae families. Acta Horticulturae, 937, 455–461.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

Nakamura, M., & Maeda, M. (1995). Gametophytes derived from sporophytic tissues in a fern, Lygodium japonicum L. 1. Induction of the gametophytes and their protoplast isolation. Journal of Plant Physiology, 145, 185–188.

Obermayer, R., Leitch, I. J., Hanson, L., & Bennett, M. D. (2002). Nuclear DNA C-values in 30 species double the familial representation in Pteridophytes. Annals of Botany, 90, 209–217.

Parajuli, J., & Joshi, S. D. (2014). In vitro study of effects of growth hormones on sporophyte development of Cyathea spinulosa. International Journal of Biodiversity and Conservation, 6, 247–255.

Rybczyński, J. J., Mikuła, A., & Zgagacz, E. (1999). Thidiazuron effect on in vitro morphogenic response of lupin. In E. van Santen & M. Wink (Eds.), Lupin, an ancient crop for the new millennium: Proceedings of the 9th International Lupin Conference, Klink/Muritz, Germany, June 20–24, 1999 (pp. 385–387). International Lupin Association.

Rybczyński, J. J., Tomiczak, K., Grzyb, M., & Mikuła, A. (2018). Morphogenic events in ferns: Single and multicellular explants in vitro. In H. Fernandez (Ed.), Current advances in fern research (pp. 99–120). Springer.

Salmi, M. L., Bushart, T. J., Stout, S. C., & Roux, S. J. (2005). Profile and analysis of gene expression change during early development in germination spore of Ceratopteris richardii. Plant Physiology, 138, 1734–1745.

Shukla, S. P., & Khare, P. B. (2012). In vitro mass multiplication of a threatened tree fern, Cyathea spinulosa Wall. ex Hook. International Journal of Genetic Engineering and Biotechnology, 3, 15–23.

Takahashi, N., Kami, C., Ota, I., Morita, N., & Imaichi, R. (2015). Developmental morphology of the typical cordate gametophyte of a homosporous leptosporangiate fern, Lygodium japonicum (Lygodiaceae), focusing on the initial cell behavior of two distinct meristems. American Journal of Botany, 102, 197–207.

Tukey, H. B. (1947). 2,4-D, a potent growth regulator of plants. The Scientific Monthly, 64, 93–97.

White, R. A. (1979). Experimental investigation of fern sporophyte development. In A. F. Dyer (Ed.), Experimental biology of ferns (pp. 505–549). Academic Press.

Yu, R., Zhang, G., Li, H., Cao, H., Mo, X., Gui, M., Zhou, X., Jiang, Y., Li, S., & Wang, J. (2017). In vitro propagation of the endangered tree fern Cibotium barometz through formation of green globular bodies. Plant Cell, Tissue and Organ Culture, 128, 369–379.


Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Polish Botanical Society