Cryopreservation of Plant Tissues in Poland: Research Contributions, Current Status, and Applications

Anna Mikuła, Paweł Chmielarz, Teresa Hazubska-Przybył, Dariusz Kulus, Małgorzata Maślanka, Bożena Pawłowska, Ewa Zimnoch-Guzowska

Abstract


Cryopreservation of vegetatively propagated plant material is an increasingly widely used method for the efficient and safe storage of germplasm resources around the world. In Poland, there are currently four cryobanks in use for long-term plant protection programs. However, plant tissues propagated in vitro constitute only a small portion of the accessions stored in them. To date, cryogenic storage techniques have been developed and adopted in this country for ornamental plants (roses, chrysanthemums, and geophytes), crop species (potato and garlic), forest tree species (the genera Quercus and Fraxinus), and some ferns. Polish researchers have used suspension cultures of Gentiana spp. and shoot tips of Lamprocapnos spectabilis to improve cryopreservation knowledge. A better understanding of the benefits of cryopreservation and its widespread implementation in plant biodiversity conservation programs is required. The objective of this review is to provide a concise synthesis of the scientific contributions, current status, and applications of cryogenic techniques for the conservation of in vitro culture-derived plant tissues in Poland. First, the results contributing to research that has been achieved using cell suspensions and advances related to the use of nanoparticles and plant extracts to improve cryopreservation efficiency are discussed. Then, the applications and advances in cryopreservation of ornamental plants (roses, radiomutants, plant chimeras, Lamprocapnos spp., and geophytes), crop species (potato and garlic), forest trees, and ferns are summarized.

Keywords


crops; ferns; nanoparticles; ornamental plants; suspension cultures; trees

Full Text:

PDF XML (JATS)

References


Aderkas, P., & Bonga, J. M. (2000). Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiology, 20, 921–928. https://doi.org/10.1093/treephys/20.14.921

Aguilar, M. E., Engelmann, F., & Michaux-Ferrière, N. (1993). Cryopreservation of cell suspensions of Citrus deliciosa Tan. and histological study. CryoLetters, 14, 217–228.

Bachiri, Y., Bajon, C., Sauvanet, A., Gazeau, C., & Morisset, C. (2000). Effect of osmotic stress on tolerance of air-drying and cryopreservation of Arabidopsis thaliana suspension cells. Protoplasma, 214, 227–243. https://doi.org/10.1007/BF01279067

Baek, H. J., Kim, H. H., Cho, E. G., Chae, Y. A., & Engelmann, F. (2003). Importance of explant size and origin and of preconditioning treatments for cryopreservation of garlic shoot apices by vitrification. CryoLetters, 24, 381–388.

Bajaj, Y. P. S. (1977). Initiation of shoots and callus from potato-tuber sprouts and axillary buds frozen at −196 °C. Crop Improvement, 4, 48–53.

Ballesteros, D., & Pence, C. C. (2018). Fern conservation: Spore, gametophyte, and sporophyte ex situ storage, in vitro culture, and cryopreservation. In H. Fernández (Ed.), Current advances in fern research (pp. 227–249). Springer. https://doi.org/10.1007/978-3-319-75103-0_11

Barra-Jiménez, A. (2015). Development of somatic embryogenesis for cloning and conservation of mature holm oak trees (Quercus ilex L.) [Doctoral dissertation, Universidad Politécnica de Madrid]. Archivo Digital UPM. https://oa.upm.es/37470/

Ben-Amara, A., Daldoula, S., Allel, D., Reustleb, G., & Mliki, A. (2013). Reliable encapsulation-based cryopreservation protocol for safe storage and recovery of grapevine embryogenic cell cultures. Scientia Horticulturae, 157, 32–38. https://doi.org/10.1016/j.scienta.2013.04.005

Benelli, C. (2021). Plant cryopreservation: A look at the present and the future. Plants, 10, Article 2744. https://doi.org/10.3390/plants10122744

Benson, E. E., Lynch, P. T., & Jones, J. (1992). The detection of lipid peroxidation products in cryoprotected and frozen rice cells: Consequences for post-thaw survival. Plant Science, 85, 107–114. https://doi.org/10.1016/0168-9452(92)90099-8

Bettoni, J. C., Bonnart, R., & Volk, G. M. (2021). Challenges in implementing plant shoot tip cryopreservation technologies. Plant Cell, Tissue and Organ Culture, 144, 21–34. https://doi.org/10.1007/s11240-020-01846-x

Bouafia, S., Jelti, N., Lairy, G., Blanc, A., Bonnel, E., & Dereuddre, J. (1996). Cryopreservation of potato shoot tips by encapsulation-dehydration. Potato Research, 39, 69–78. https://doi.org/10.1007/BF02358208

Breman, E., Ballesteros, D., Castillo-Lorenzo, E., Cockel, C., Dickie, J., Faruk, A., O’Donnell, K., Offord, C. A., Pironon, S., Sharrock, S., & Ulian, T. (2021). Plant diversity conservation challenges and prospects: The perspective of botanic gardens and the Millennium Seed Bank. Plants, 10, Article 2371. https://doi.org/10.3390/plants10112371

Breton, D., Harvengt, L., Trontin, J.-F., Bouvet, A., & Favre, J.-M. (2005). High subculture frequency, maltose-based and hormone-free medium sustained early development of somatic embryos in maritime pine. In Vitro Cellular & Developmental Biology – Plant, 41, 494–504. https://doi.org/10.1079/IVP2005671

Chmielarz, P. (1997). Frost resistance of Quercus robur tested in controlled conditions. In A. Wulf & T. Schröder (Eds.), Behandlung und Lagerung von Eichensaatgut [Treatment and storage of oak seeds] (pp. 76–81). Parey.

Chmielarz, P. (1999). Somatic embryogenesis of Quercus robur L. and cryopreservation of somatic embryos in liquid nitrogen. In T. Schröder & A. Wulf (Eds.), Fortschritte bei der Lagerungstechnologie von Eichensaatgut [Recent progress in the storage technology of acorns] (pp. 49–59). Parey. https://doi.org/10.5073/20210706-080736

Chmielarz, P., Grenier-de March, G., & de Boucaud, M. T. (2005). Cryopreservation of Quercus robur L. embryogenic calli. CryoLetters, 26, 349–356.

Chmielarz, P., Michalak, M., Pałucka, M., & Wasileńczyk, U. (2011). Successful cryopreservation of Quercus robur plumules. Plant Cell Reports, 30, 1405–1414. https://doi.org/10.1007/s00299-011-1049-3

Ciringer, T., Martín, C., Šajna, N., Kaligarič, M., & Ambrožič-Dolinšek, J. (2018). Cryopreservation of an endangered Hladnikia pastinacifolia Rchb. by shoot tip encapsulation-dehydration and encapsulation-vitrification. In Vitro Cellular and Developmental Biology – Plant, 54, 565–575.

https://doi.org/10.1007/s11627-018-9917-y

Duncan, D. R., & Widholm, J. M. (2004). Osmotic induced stimulation of the reduction of the viability dye 2,3,5-triphenyltetrazolium chloride by maize roots and callus cultures. Journal of Plant Physiology, 161, 397–403. https://doi.org/10.1078/0176-1617-01237

Edesi, J., Tolonen, J., Ruotsalainen, A. L., Aspi, J., & Häggman, H. (2020). Cryopreservation enables long-term conservation of critically endangered species Rubus humulifolius. Biodiversity and Conservation, 29, 303–314. https://doi.org/10.1007/s10531-019-01883-9

Egertsdotter, U., Ahmad, I., & Clapham, D. (2019). Automation and scale up of somatic embryogenesis for commercial plant production, with emphasis on conifers. Frontiers in Plant Science, 10, Article 109. https://doi.org/10.3389/fpls.2019.00109

Engelmann, F. (2004). Plant cryopreservation: Progress and prospects. In Vitro Cellular & Developmental Biology-Plant, 40, 427–433. https://doi.org/10.1079/IVP2004541

Engelmann, F., Lartaud, M., Chabrillange, N., Carron, M. P., & Etienne, H. (1997). Cryopreservation of embryogenic calluses of two commercial clones of Hevea brasiliensis. CryoLetters, 18, 107–116.

Escobar, R. H., Debouck, D. G., & Roca, W. M. (2000). Development of cassava cryopreservation. In F. Engelmann & H. Takai (Eds.), Cryopreservation of tropical plant gemplasm – Current research progress and application (pp. 222–226). JIRCAS. https://hdl.handle.net/10568/111230

Flis, B., Hennig, J., Strzelczyk-Żyta, D., Gebhardt, C., & Marczewski, W. (2005). The Ry-f sto gene from Solanum stoloniferum for extreme resistant to Potato virus Y maps to potato chromosome XII and is diagnosed by PCR marker GP122718 in PVY resistant potato cultivars. Molecular Breeding, 15, 95–101. https://doi.org/10.1007/s11032-004-2736-3

Fukai, S., Goi, M., & Tanaka, M. (1994). The chimeric structure of the apical dome of chrysanthemum [Dendranthema grandiflorum (Ramat.) Kitam.] is affected by cryopreservation. Scientia Horticulturae, 57, 347–351. https://doi.org/10.1016/0304-4238(94)90117-1

Gnasekaran, P., Rathinam, X., Sinniah, U. R., & Subramaniam, S. (2010). A study on the use of organic additives on the protocorm-like bodies (PLBS) growth of Phalaenopsis violacea orchid. Journal of Phytology, 2, 29–33.

Goller, K., & Rybczyński, J. J. (1995). In vitro culture used for woody fern Cyathea australis (R. Br) Domin vegetative propagation. Acta Societatis Botanicorum Poloniae, 64, 13–17. https://doi.org/10.5586/asbp.1995.002

Goller, K., & Rybczyński, J. J. (2007). Gametophyte and sporophyte of tree ferns in vitro culture. Acta Societatis Botanicorum Poloniae, 76, 193–199. https://doi.org/10.5586/asbp.2007.022

Häggman, H. M., Ryynänen, L. A., Aronen, T. S., & Krajnakova, J. (1998). Cryopreservation of embryogenic cultures of Scots pine. Plant Cell, Tissue and Organ Culture, 54, 45–53. https://doi.org/10.1023/A:1006104325426

Halmagyi, A., Coste, A., Tripon, S., & Crăciun, C. (2017). Low temperature induced ultrastructural alterations in tomato (Lycopersicon esculentum Mill.) shoot apex cells. Scientia Horticulturae, 222, 22–31. https://doi.org/10.1016/j.scienta.2017.04.019

Halmagyi, A., Fischer-Klüver, G., Mix-Wagner, G., & Schumacher, H. M. (2004). Cryopreservation of Chrysanthemum morifolium (Dendranthema grandiflora Ramat.) using different approaches. Plant Cell Reports, 22, 371–375. https://doi.org/10.1007/s00299-003-0703-9

Halmagyi, A., & Pinker, I. (2006a). Plant regeneration from Rosa shoot tips cryopreserved by a combined droplet-vitrification method. Plant Cell, Tissue Organ Culture, 84, 145–153. https://doi.org/10.1007/s11240-005-9012-z

Halmagyi, A., & Pinker, I. (2006b). Cryopreservation of Rosa shoot tips: Importance of preculture conditions. Acta Horticulture, 725, 351–356. https://doi.org/10.17660/ActaHortic.2006.725.45

Hazubska-Przybył, T., Chmielarz, P., Michalak, M., & Bojarczuk, K. (2010). Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce). Plant Cell, Tissue and Organ Culture, 102, 35–44. https://doi.org/10.1007/s11240-010-9701-0

Hazubska-Przybył, T., Chmielarz, P., Michalak, M., Dering, M., & Bojarczuk, K. (2013). Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowth-dehydration method. Plant Cell, Tissue and Organ Culture, 113, 303–313. https://doi.org/10.1007/s11240-012-0270-2

Hirai, D., & Sakai, A. (1999). Cryopreservation of in vitro-grown meristems of potato (Solanum tuberosum L.) by encapsulation-vitrification. Potato Research, 42, 153–160. https://doi.org/10.1007/BF02358405

Hitmi, A., Coudret, A., Barthomeuf, C., & Sallanon, H. (1999). The role of sucrose in freezing tolerance in Chrysanthemum cinerariaefolium L. cell cultures. CryoLetters, 20, 45–54.

Kaczmarczyk, A., Rokka, V.-M., & Keller, E. R. J. (2011). Potato shoot tips cryopreservation. A review. Potato Research, 54, 45–79. https://doi.org/10.1007/s11540-010-9169-7

Kaczmarczyk, A., Rutten, T., Melzer, M., & Keller, E. R. J. (2008). Ultrastructural changes associated with cryopreservation of potato (Solanum tuberosum L.) shoot tips. Cryoletters, 29(2), 145–156.

Keller, E. R. J. (2005). Improvement of cryopreservation results in garlic using low temperature preculture and high-quality in vitro plantlets. CryoLetters, 26(6), 357–366.

Keller, E. R. J., & Senula, A. (2013). Micropropagation and cryopreservation of garlic (Allium sativum L.). In M. Lambardi, E. Ozudogru, & S. Jain (Eds.), Protocols for micropropagation of selected economically-important horticultural plants (pp. 353–368). Humana Press. https://doi.org/10.1007/978-1-62703-074-8_28

Keller, E. R. J., Senula, A., & Kaczmarczyk, A. (2008). Cryopreservation of herbaceous dicots. In B. M. Reed (Ed.), Plant cryopreservation: A practical guide (pp. 281–332). Springer. https://doi.org/10.1007/978-0-387-72276-4_12

Kim, H. H., Yoon, J. W., Park, Y. E., Cho, E. G., Sohn, J. K., Kim, T. S., & Engelmann, F. (2006). Cryopreservation of potato cultivated varieties and wild species: Critical factors in droplet vitrification. CryoLetters, 27(4), 223–234.

Kobayashi, T., Niino, T., & Kobayashi, M. (2005). Simple cryopreservation protocol with an encapsulation technique for tobacco BY-2 suspension cell cultures. Plant Biotechnology, 22, 105–112. https://doi.org/10.5511/plantbiotechnology.22.105

Kryszczuk, A. (2005). Opracowanie metody kriokonserwacji zasobów genowych ziemniaka [Development of the cryopreservation method of potato genetic resources] [Unpublished doctoral dissertation]. Plant Breeding and Acclimatization Institute.

Kryszczuk, A., Keller, J., Grübe, M., & Zimnoch-Guzowska, E. (2006). Cryopreservation of potato (Solanum tuberosum L.) shoot tips using vitrification and droplet method. Journal of Food Agriculture and Environment, 4, 196–200.

Kucharska, D., Gruchała, A., & Orlikowska, T. (2006). In vitro propagation of four rose rootstocks. Propagation of Ornamental Plants, 6, 44–50.

Kulus, D. (2018). Effect of various preculture, pretreatment and recovery conditions on the morphogenetic response of cryopreserved chrysanthemum ‘Lady Orange’ shoot tips. Turkish Journal of Biology, 42, 76–86. https://doi.org/10.3906/biy-1711-47

Kulus, D. (2019). Managing plant genetic resources using low and ultra-low temperature storage: A case study of tomato. Biodiversity and Conservation, 28, 1003–1027. https://doi.org/10.1007/s10531-019-01710-1

Kulus, D. (2020a). Effect of bead composition, PVS type, and recovery medium in cryopreservation of bleeding heart ‘Valentine’ – Preliminary study. Agronomy, 10, Article 891. https://doi.org/10.3390/agronomy10060891

Kulus, D. (2020b). Shoot tip cryopreservation of Lamprocapnos spectabilis (L.) Fukuhara using different approaches and evaluation of stability on the molecular, biochemical, and plant architecture levels. International Journal of Molecular Sciences, 21, Article 3901. https://doi.org/10.3390/ijms21113901

Kulus, D. (2020c). Cryopreservation of bleeding heart [Lamprocapnos spectabilis (L.) Fukuhara] shoot tips using encapsulation-dehydration. CryoLetters, 41(2), 75–85.

Kulus, D., & Abratowska, A. (2017). (Cryo)conservation of Ajania pacifica (Nakai) Bremer et Humphries shoot tips via encapsulation-dehydration technique. CryoLetters, 38(5), 387–398.

Kulus, D., Abratowska, A., & Mikuła, A. (2018). Morphogenetic response of shoot tips to cryopreservation by encapsulation-dehydration in a solid mutant and periclinal chimeras of Chrysanthemum × grandiflorum /Ramat./ Kitam. Acta Physiologiae Plantarum, 40, Article 18. https://doi.org/10.1007/s11738-017-2593-4

Kulus, D., & Mikuła, A. (2016). Krioprezerwacja w zabezpieczaniu stabilności i aktywności fizjologicznej komórek roślinnych [Cryopreservation in securing the stability and physiological activity of plant cells]. Acta Scientiarum Polonorum, Biotechnologia, 15(4), 31–42.

Kulus, D., & Miler, N. (2021). Application of plant extracts in micropropagation and cryopreservation of bleeding heart: An ornamental-medicinal plant species. Agriculture, 11(6), Article 542. https://doi.org/10.3390/agriculture11060542

Kulus, D., Rewers, M., Serocka, M., & Mikuła, A. (2019). Cryopreservation by encapsulation-dehydration affects the vegetative growth of chrysanthemum but does not disturb its chimeric structure. Plant Cell, Tissue and Organ Culture, 138, 153–166. https://doi.org/10.1007/s11240-019-01614-6

Kulus, D., Serocka, M., & Mikuła, A. (2018). Effect of various preculture and osmotic dehydration conditions on cryopreservation efficiency and morphogenetic response of chrysanthemum shoot tips. Acta Scientiarum Polonorum, Hortorum Cultus, 17, 139–147. https://doi.org/10.24326/asphc.2018.1.13

Kulus, D., & Tymoszuk, A. (2021). Gold nanoparticles affect the cryopreservation efficiency of in vitro-derived shoot tips of bleeding heart. Plant Cell, Tissue and Organ Culture, 146, 297–311. https://doi.org/10.1007/s11240-021-02069-4

Kulus, D., & Zalewska, M. (2014). Cryopreservation as a tool used in long-term storage of ornamental species – A review. Scientia Horticulturae, 168, 88–107. https://doi.org/10.1016/j.scienta.2014.01.014

Kwaśniewska, E., Dziedzic, E., & Pawłowska, B. (2017). Integration of cryopreservation and tissue culture for germplasm conservation and propagation of Rosa pomifera ‘Karpatia’. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45, 208–214. https://10.15835/nbha45110566

Lambardi, M., Ozudogru, E. A., & Benelli, C. (2008). Cryopreservation of embryogenic cultures. In B. M. Reed (Ed.), Plant cryopreservation: A practical guide (pp. 177–210). Springer. https://doi.org/10.1007/978-0-387-72276-4_9

Lardet, L., Martin, F., Dessailly, F., Carron, M. P., & Montoro, P. (2007). Effect of exogenous calcium on post-thaw growth recovery and subsequent plant regeneration of cryopreserved embryogenic calli of Hevea brasiliensis (Mull. Arg.). Plant Cell Reports, 26, 559–569. https://doi.org/10.1007/s00299-006-0278-3

Le Bras, C., Le Besnerais, P. H, Hamama, L., & Grapin, A. (2014). Cryopreservation of ex-vitro-grown Rosa chinensis ‘Old Blush’ buds using droplet-vitrification and encapsulation-dehydration. Plant Cell, Tissue and Organ Culture, 116, 235–242. https://doi.org/10.1007/s11240-013-0400-5

Lelu-Walter, M.-A., Thompson, D., Harvengt, L., Sanchez, L., Toribio, M., & Pâques, L. E. (2013). Somatic embryogenesis in forestry with a focus on Europe: State-of-the-art, benefits, challenges and future direction. Tree Genetic & Genomes, 9, 883–899. https://doi.org/10.1007/s11295-013-0620-1

Lenartowicz, T. (2021). Ziemniak [Potato]. In Lista odmian roślin rolniczych wpisanych do krajowego rejestru w Polsce [Polish national list of agricultural plant varieties] (pp. 65–71). Centralny Ośrodek Badania Odmian Roślin Uprawnych.

Leus, L., Jeanneteau, F., Van Jeanneteau, J., Van Bockstaele, E., & De Riek, J. (2004). Molecular evaluation of a collection of rose species and cultivars by AFLP, ITS, rbcL and matK. Acta Horticulturae, 651, 141–147. https://doi.org/10.17660/ActaHortic.2004.651.16

Li, D. Z., & Pritchard, H. W. (2009). The science and economics of ex situ plant conservation. Trends in Plant Science, 14, 614–621. https://doi.org/10.1016/j.tplants.2009.09.005

Li, M., Lin, Y.-C., Wu, C.-C., & Liu, H.-S. (2005). Enhancing the efficiency of a PCR using gold nanoparticles. Nucleic Acids Research, 33(21), Article e184. https://doi.org/10.1093/nar/gni183

Lynch, P. T., Harris, W. C., & Chartier Hollis, J. M. (1996). The cryopreservation of shoot tips of Rosa multiflora. Plant Growth Regulators, 20, 43–45. https://doi.org/10.1007/BF00024056

Mahajan, R. (2016). In vitro and cryopreservation techniques for conservation of snow mountain garlic. In S. Jain (Ed.), Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants (2nd ed., pp. 335–346). Humana Press. https://doi.org/10.1007/978-1-4939-3332-7_23

Makowski, D. (2013). Wybrane gatunki Pteropsida w kulturze in vitro i krioprezerwacji [Selected species of Pteropsida in in vitro culture and cryopreservation] [Unpublished doctoral dissertation]. Polish Academy of Sciences Botanical Garden – Center for Biological Diversity Conservation in Powsin.

Makowski, D., Rybczyński, J. J., & Mikuła, A. (2015). A simple way to overcome the recalcitrance of the water fern Ceratopteris thalictroides (L.) Brongn. to cryopreservation. Acta Societatis Botanicorum Poloniae, 84, 385–388. https://doi.org/10.5586/asbp.2015.032

Makowski, D., Tomiczak, K., Rybczyński, J. J., & Mikuła, A. (2016). Integration of tissue culture and cryopreservation methods for propagation and conservation of the fern Osmunda regalis L. Acta Physiologiae Plantarum, 38, Article 19. https://doi.org/10.1007/s11738-015-2037-y

Marchant, R., Power, J. B., Davey, M. R., Chartier-Hollis, J. M., & Lynch, P. T. (1993). Cryopreservation of pollen from two rose cultivars. Euphytica, 66, 235–241. https://doi.org/10.1007/BF00025309

Marczewski, W., Flis, B., Syller, J., Strzelczyk-Żyta, D., Hennig, J., & Gebhardt, C. (2004). Two allelic or tightly linked genetic factors at the PLRV.4 locus on potato chromosome XI control resistance to potato leafroll virus accumulation. Theoretical and Applied Genetics, 109, 1604–1609. https://doi.org/10.1007/s00122-004-1780-z

Martínez, M. T., Ballester, A., & Vieitez, A. M. (2003). Cryopreservation of embryonic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiology, 46, 182–189. https://doi.org/10.1016/s0011-2240(03)00024-5

Maślanka, M., Panis, B., & Bach, A. (2013). Cryopreservation of Galanthus elwesii Hook. apical meristems by droplet vitrification. Cryoletters, 34(1), 1–9.

Maślanka, M., Panis, B., & Malik, M. (2016). Cryopreservation of Narcissus L. ‘Carlton’ somatic embryos by droplet vitrification. Propagation of Ornamental Plants, 16(1), 28–35.

Maślanka, M., & Szewczyk, A. (2021). Droplet-vitrification cryopreservation of Tulipa tarda Stapf. apical meristems. Plant Cell, Tissue and Organ Culture, 144, 91–95. https://doi.org/10.1007/s11240-020-01910-6

Meï, C., Michaud, M., Cussac, M., Albrieux, C., Gros, V., Maréchal, E., Block, M. A., Jouhet, J., & Rébeillé, F. (2015). Levels of polyunsaturated fatty acids correlate with growth rate in plant cell cultures. Scientific Reports, 5, Article 15207. https://doi.org/10.1038/srep15207

Menges, M., & Murray, J. A. (2004). Cryopreservation of transformed and wild-type Arabidopsis and tobacco cell suspension cultures. The Plant Journal, 37, 635–644. https://doi.org/10.1046/j.1365-313x.2003.01980.x

Mikuła, A. (2006). Comparison of three techniques for cryopreservation and reestablishment of long-term Gentiana tibetica suspension culture. CryoLetters, 27, 269–282.

Mikuła, A., Gaj, M., Grzyb, M., Hazubska-Przybył, T., Kępczyńska, E., Kępczyński, J., Rybczyński, J. J., Tomiczak, K., & Wójcik, A. M. (2022). Polish contribution to global research on somatic embryogenesis. Acta Societatis Botanicorum Poloniae, 91, Article 9115. https://doi.org/10.5586/asbp.9115

Mikuła, A., Jata, K., & Rybczyński, J. J. (2009). Cryopreservation strategies for Cyathea australis (R. BR.) DOMIN. CryoLetters, 30(6), 429–439.

Mikuła, A., Makowski, D., Walters, C., & Rybczyński, J. J. (2011). Exploration of cryo-methods to preserve tree and herbaceous fern gametophytes. In H. Fernández, A. Kumar, & M. A. Revilla (Eds.), Working with ferns: Issues and applications (pp. 173–192). Springer. https://doi.org/10.1007/978-1-4419-7162-3_13

Mikuła, A., Niedzielski, M., & Rybczyński, J. J. (2006). The use of TTC reduction assay for assessment of Gentiana spp. cell suspension viability after cryopreservation. Acta Physiologiae Plantarum, 28, 315–324. https://doi.org/10.1007/s11738-006-0027-9

Mikuła, A., Olas, M., Sliwinska, E., & Rybczyński, J. J. (2008). Cryopreservation by encapsulation of Gentiana spp. cell suspensions maintains regrowth, embryogenic competence and DNA content. CryoLetters, 29, 409–418.

Mikuła, A., & Rybczyński, J. J. (2006). Preliminary studies on cryopreservation and strategies of Cyathea australis gametophyte development in vitro. Botanical Guidebooks, 29, 133–142.

Mikuła, A., Tomiczak, K., Domżalska, L., & Rybczyński, J. J. (2015). Cryopreservation of Gentianaceae: trends and applications. In J. J. Rybczyński, M. Davey, & A. Mikuła (Eds.), The Gentianaceae – Volume 2: Biotechnology and applications (pp. 267–286). Springer. https://doi.org/10.1007/978-3-642-54102-5_11

Mikuła, A., Tomiczak, K., & Rybczyński, J. J. (2011). Cryopreservation enhances embryogenic capacity of Gentiana cruciata (L.) suspension culture and maintains (epi)genetic uniformity of regenerants. Plant Cell Reports, 30, 565–574. https://doi.org/10.1007/s00299-010-0970-1

Mikuła, A., Tomiczak, K., Wójcik, A. L., & Rybczyński, J. J. (2011). Encapsulation-dehydration method elevates embryogenic abilities of Gentiana kurroo cell suspension and carrying on genetic stability of its regenerants after cryopreservation. Acta Horticulturae, 908, 143–154. https://doi.org/10.17660/ActaHortic.2011.908.16

Mikuła, A., Tykarska, T., & Kuraś, M. (2005). Ultrastructure of Gentiana tibetica proembryogenic cells before and after cooling treatments. CryoLetters, 26, 367–378.

Miler, N., Jedrzejczyk, I., Jakubowski, S., & Winiecki, J. (2021). Ovaries of chrysanthemum irradiated with high-energy photons and high-energy electrons can regenerate plants with novel traits. Agronomy, 11, Article 1111. https://doi.org/10.3390/agronomy11061111

Miler, N., & Zalewska, M. (2014). Somaclonal variation of chrysanthemum propagated in vitro from different explant types. Acta Scientiarum Polonorum, Hortorum Cultus, 13, 69–82. https://czasopisma.up.lublin.pl/index.php/asphc/article/view/2695

Molnár, Z., Virág, E., & Ördög, V. (2011). Natural substances in tissue culture media of higher plants. Acta Biologica Szegediensis, 55(1), 123–127.

Nausch, H., & Buyel, J. F. (2021). Cryopreservation of plant cell cultures – Diverse practices and protocols. New Biotechnology, 62, 86–95. https://doi.org/10.1016/j.nbt.2021.02.002

Nawrot-Chorabik, K., & Sitko, K. (2014). The effect of abscisic acid and dimethyl sulfoxide and different temperatures on the cryopreservation process of Abies nordmanniana (Steven) Spach embryogenic callus. Phyton; Annales Rei Botanicae, 54, 275–284. https://doi.org/jnpr

Nishizawa, S., Sakai, A., Amano, Y., & Matsuzawa, T. (1993). Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Science, 91, 67–73. https://doi.org/10.1016/0168-9452(93)90189-7

Nuc, K., Marszałek, M., & Pukacki, P. M. (2016). Cryopreservation changes the DNA methylation of embryonic axes of Quercus robur and Fagus sylvatica seeds during in vitro culture. Trees, 30, 1831–1841. https://doi.org/10.1007/s00468-016-1416-3

Olas-Sochacka, M. (2017). Zabezpieczenie zasobów genowych czosnku pospolitego (Allium sativum L.) w kriobanku genów [Preservation of garlic (Allium sativum L.) genetic resources in cryobank]. Zeszyty Naukowe Instytutu Ogrodnictwa, 25, 85–93.

Olas-Sochacka, M., & Kotlińska, T. (2015). International cryobank of the genus Allium. In J. J. Rybczyński & J. T. Puchalski (Eds.), Biological diversity in Poland – The challenges and tasks for botanical gardens and gene banks until 2020 (pp. 35–39). Polish Academy of Sciences Botanical Garden – Center for Biological Diversity Conservation in Powsin.

Panis, B. (2019). Sixty years of plant cryopreservation: From freezing hardy mulberry twigs to establishing reference crop collections for future generations. Acta Horticulturae, 1234, 1–8. https://doi.org/10.17660/ActaHortic.2019.1234.1

Park, S., An, B., & Park, S. J. (2018). Reconfiguration of the plastid genome in Lamprocapnos spectabilis: IR boundary shifting, inversion, and intraspecific variation. Scientific Reports, 8, Article 13568. https://doi.org/10.1038/s41598-018-31938-w

Park, Y. S. (2002). Implementation of conifer somatic embryogenesis in clonal forestry: Technical requirements and deployment considerations. Annales of Forestry Sciences, 59, 651–656. https://doi.org/10.1051/forest:2002051

Pawłowska, B. (2011). The effect of BA and GA3 on the shoot multiplication of in vitro cultures of Polish wild roses. Folia Horticuturae, 23(2), 145–149. https://doi.org/10.2478/v10245-011-0022-5

Pawłowska, B. (2012). Cryopreservation of Rosa canina and R. rubiginosa apical buds by the droplet vitrification method. Acta Horticulturae, 937, 905–910. https://doi.org/10.17660/ActaHortic.2012.937.111

Pawłowska, B., & Bach, A. (2011). Cryopreservation by encapsulation-dehydration of in vitro grown shoot buds of rosa ‘New Dawn’. Acta Horticulturae, 908, 303–307. https://doi.org/10.17660/actahortic.2011.908.40

Pawłowska, B., Neugebauerová, J., Bieniasz, M., Szewczyk-Taranek, B., & Ondrášek, I. (2019). Cryopreservation of Caninae rose shoot tips guarantees biochemical stability and pollination potential monitored in four-year-old regenerants. Horticultural Science, 46, 90–97. https://doi.org/10.17221/239/2017-HORTSCI

Pawłowska, B., & Szewczyk-Taranek, B. (2014). Droplet vitrification cryopreservation of Rosa canina and Rosa rubiginosa using shoot tips from in situ plants. Scientia Horticulturae, 168, 151–156. https://doi.org/10.1016/j.scienta.2013.12.016

Pawłowska, B., & Szewczyk-Taranek, B. (2015). Efficient cryopreservation by droplet vitrification of pentaploid roses and the phenotype of regenerated plants. Acta Societatis Botanicorum Poloniae, 84(4), 439–442. https://doi.org/10.5586/asbp.2015.038

Pelah, D., Kaushik, R. A., Nerd, A., & Mizrahi, Y. (2003). Validity of in vitro viability tests for predicting response of different vine cacti in the field to high and low temperatures. Journal of the Professional Association for Cactus Development, 5, 65–71.

Pence, V. C. (2014). Tissue cryopreservation for plant conservation: Potential and challenges. International Journal of Plant Sciences, 175(1), 40–45. https://doi.org/10.1086/673301

Pence, V. C. (2018). Growth of fern gametophytes after 20 years of storage in liquid nitrogen. The Fern Gazette, 20(8), 337–346.

Podwyszyńska, M., Orlikowska, T., Trojak-Goluch, A., & Wojtania, A. (2022). Application and improvement of in vitro culture systems for commercial production of ornamental, fruit, and industrial plants in poland. Acta Societatis Botanicorum Poloniae, 91, Article 914. https://doi.org/10.5586/asbp.914

Pomeroy, M. K., & Andrews, C. J. (1978). Ultrastructural changes in shoot apex cells of winter wheat seedlings during ice encasement. Canadian Journal of Botany, 56, 786–794. https://doi.org/10.1139/b78-090

Rajasekharan, P. E., & Ganeshan, S. S. (1994). Freeze preservation of rose pollen in liquid nitrogen: feasibility, viability and fertility status after long-term storage. Journal of Horticultural Science, 69, 565–569. https://doi.org/10.1080/14620316.1994.11516488

Roque-Borda, C. A., Kulus, D., de Souza, A. V., Kaviani, B., & Vicente, E. F. (2021). Cryopreservation of agronomic plant germplasm using vitrification-based methods: An overview of selected case studies. International Journal of Molecular Sciences, 22(11), Article 6157. https://doi.org/10.3390/ijms22116157

Sadia, B., Anthony, P., Lowe, K. C., Power, J. B., & Davey, M. R. (2003). Culture treatments for enhancing post-thaw recovery of cryopreserved suspension cells of potato cv. Desiree. Cellular & Molecular Biology Letters, 8, 979–989.

Sakai, A., Kobayashi, S., & Oiyama, I. (1990). Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports, 9, 30–33. https://doi.org/10.1007/BF00232130

Salaj, T., Blehová, A., & Salaj, J. (2007). Embryogenic suspension cultures of Pinus nigra Arn.: Growth parameters and maturation ability. Acta Physiologiae Plantarum, 29, 225–231. https://doi.org/10.1007/s11738-007-0028-3

Salaj, T., Matusikova, I., Panis, B., Swennen, R., & Salaj, J. (2010). Recovery and characterisation of hybrid firs (Abies alba × A. cephalonica, Abies alba × A. numidica) embryogenic tissues after cryopreservation. CryoLetters, 31, 206–217.

Schäfer-Menuhr, A., Müller, E., & Mix-Wagner, G. (1996). Cryopreservation: An alternative for the long-term storage of old potato varieties. Potato Research, 39, 507–513. https://doi.org/10.1007/BF02358469

Schäfer-Menuhr, A., Schumacher, H. M., & Mix-Wagner, G. (1997). Long-term storage of old potato varieties by cryopreservation of shoot-tips in liquid nitrogen. Plant Genetic Resources News, 111, 19–24.

Škrlep, K., Bergant, M., de Winter, G. M., Bohanec, B., Žel, J., Verpoorte, R., Van Iren, F., & Camloh, M. (2008). Cryopreservation of cell suspension cultures of Taxus × media and Taxus floridana. Biologia Plantarum, 52, 329–333. https://doi.org/10.1007/s10535-008-0067-7

Smith, B. A., Reider, M. L., & Fletcher, J. S. (1982). Relationship between vital staining and subculture growth during the senescence of plant tissue cultures. Plant Physiology, 70, 1228–1230. https://doi.org/10.1104/pp.70.4.1228

Smyda-Dajmund, P. (2017). Cryopreservation of shoot tips and pollen of potato. Plant Breeding and Seed Science, 76, 75–80. https://doi.org/10.1515/plass-2017-00025

Su, J., Jiang, J., Zhang, F., Liu, Y., Ding, L., Chen, S., & Chen, F. (2019). Current achievements and future prospects in the genetic breeding of chrysanthemum: A review. Horticulture Research, 6, Article 109. https://doi.org/10.1038/s41438-019-0193-8

Sundar, I. (2011). Food security through biodiversity conservation. International Conference on Asia Agriculture and Animal, 13, 131–138.

Swamy, M. K., Mohanty, S. K., & Anuradha, M. (2014). The effect of plant growth regulators and natural supplements on in vitro propagation of Pogostemon cablin Benth. Journal of Crop Science and Biotechnology, 17, 71–78. https://doi.org/10.1007/s12892-013-0038-1

Szczygieł, K. (2005). Somatyczna embriogeneza świerka pospolitego (Picea abies Karst.), jodły pospolitej (Abies alba Mill.) i modrzewia europejskiego (Larix decidua Mill.) [Somatic embryogenesis of Norway spruce (Picea abies Karst.), silver fir (Abies alba Mill.), and European larch (Larix decidua Mill.)] [Unpublished doctoral dissertation]. Forest Research Institute in Warsaw.

Takagi, H., Tien Thinh, N., Islam, O. M., Senboku, T., & Sakai, A. (1997). Cryopreservation of in vitro-grown shoot tips of taro [Colocasia esculenta (L.) Schott] by vitrification. 1. Investigation of basic conditions of the vitrification procedure. Plant Cell Reports, 16, 594–599. https://doi.org/10.1007/BF01275498

Tomiczak, K., Grzyb, M., Rybczyński, J. J., & Mikuła, A. (2018). Somatic embryogenesis and somatic embryo cryopreservation of the tree-fern Cyathea delgadii Sternb. In S. M. Jain & P. Gupta (Eds.), Step wise protocols for somatic embryogenesis of important woody plants (pp. 291–303). Springer. https://doi.org/10.1007/978-3-319-79087-9_23

Tomiczak, K., & Markowski, M. (2021). The influence of sucrose concentration and cryopreservation via encapsulation-dehydration on growth kinetics, embryogenic potential and secondary metabolite production of cell suspension cultures of two gentian species: Gentiana capitata Buch.-Ham. ex D. Don and G. decumbens L. f. In J. Kwaśniewska & J. Wróbel-Marek (Eds.), 10th Biennial PSEPB Conference “Experimental plant biology at various scales: From molecules to environment” (p. 171). Polish Society of Experimental Plant Biology.

Venkatachalam, P., Kalaiarasi, K., & Sreeramanan, S. (2015). Influence of plant growth regulators (PGRs) and various additives on in vitro plant propagation of Bambusa arundinacea (Retz.) Wild: A recalcitrant bamboo species. Journal of Genetic Engineering and Biotechnology, 13, 193–200. https://doi.org/10.1016/j.jgeb.2015.09.006

Verleysen, H., Samyn, G., Van Bockstaele, E., & Debergh, P. (2004). Evaluation of analytical techniques to predict viability after cryopreservation. Plant Cell, Tissue and Organ Culture, 77, 11–21. https://doi.org/fnpvd4

Volk, G. M., & Walters, C. (2006). Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology, 52, 48–61. https://doi.org/10.1016/j.cryobiol.2005.09.004

Wang, M. R., Lambardi, M., Engelmann, F., Pathirana, R., Panis, B., Volk, G. M., & Wang, Q. C. (2021). Advances in cryopreservation of in vitro-derived propagules: Technologies and explant sources. Plant Cell, Tissue and Organ Culture, 144, 7–20. https://doi.org/10.1007/s11240-020-01770-0

Wang, Q., Gafny, R., Sahar, N., Sela, I., Mawassi, M., Tanne, E., & Perl, A. (2002). Cryopreservation of grapevine (Vitis vinifera L.) embryogenic cell suspensions by encapsulation-dehydration and subsequent plant regeneration. Plant Science, 162, 551–558. https://doi.org/10.1016/S0168-9452(01)00594-5

Wang, Z. Y., Legris, G., Nagel, J., Potrykus, I., & Spangenberg, G. (1994). Cryopreservation of embryogenic cell suspensions in Festuca and Lolium species. Plant Science, 103, 93–106. https://doi.org/10.1016/0168-9452(94)03982-8

Winkelmann, T., Mußmann, V., & Serek, M. (2004). Cryopreservation of embryogenic suspension cultures of Cyclamen persicum Mill. Plant Cell Reports, 23, 1–8. https://doi.org/10.1007/s00299-004-0783-1

Zarghami, R., Pirseyedi, M., Hasrak, S., & Sardrood, B. P. (2008). Evaluation of genetic stability in cryopreserved Solanum tuberosum. African Journal of Biotechnology, 7, 2798–2802.

Zimnoch-Guzowska, E., Chmielarz, P., Wawrzyniak, M. K., Suszka, J., Kotlarski, S., Plitta-Michalak, B. P., Michalak, M., Pałucka, M., Wasileńczyk, U., Kosek, P., Barciszewska, M. Z., Barciszewski, J., Kulus, D., Rucińska, A., & Mikuła, A. (2022). Polish cryobanks: Research and conservation of plant genetic resources. Acta Societatis Botanicorum Poloniae, 91, Article 9121. https://doi.org/10.5586/asbp.9121

Żabicki, P., Mikuła, A., Sliwinska, E., Migdałek, G., Nobis, A., Żabicka, J., & Kuta, E. (2021). Cryopreservation and post-thaw genetic integrity of Viola stagnina Kit., an endangered species of wet habitats – A useful tool in ex situ conservation. Scientia Horticulturae, 284, Article 110056. https://doi.org/10.1016/j.scienta.2021.110056




DOI: https://doi.org/10.5586/asbp.9132

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society