Doubled Haploids: Contributions of Poland’s Academies in Recognizing the Mechanism of Gametophyte Cell Reprogramming and Their Utilization in Breeding of Agricultural and Vegetable Species

Iwona Żur, Adela Adamus, Teresa Cegielska-Taras, Sandra Cichorz, Ewa Dubas, Monika Gajecka, Katarzyna Juzoń-Sikora, Agnieszka Kiełkowska, Małgorzata Malicka, Sylwia Oleszczuk, Edyta Skrzypek, Laurencja Szała, Iwona Szarejko, Janusz Zimny

Abstract


Diverse processes leading to doubled haploid (DH) plant production, such as microspore embryogenesis, gynogenesis, and distant hybridization followed by genome elimination, are based on the unique ability of plant cells to form haploid embryos without fertilization. All of these are possible because of various in vitro culture systems that enable the growth and development of tissues or single cells outside of the parental organism. The possibility of re-directing cell development from its original pathway to embryogenesis brings several benefits to many research areas, but the most important is the possibility of its implementation in breeding programs.

This review summarizes the achievements of Polish research groups in studies of the mechanisms of haploid/DH embryo development and demonstrates the practical applications of these systems in basic studies and plant breeding. It shows the results of studies on economically important crops including barley (Hordeum vulgare L.), oilseed rape (Brassica napus L.), triticale (×Triticosecale Wittm.), oat (Avena sativa L.), rye (Secale cereale L.), sugar beet (Beta vulgaris ssp. vulgaris L.), and some vegetable species, including carrot (Daucus carota L.), onion (Allium cepa L.), red beet (Beta vulgaris L.), and members of the Brassicaceae.


Keywords


microspore embryogenesis; gynogenesis; distant crosses; doubled haploid

Full Text:

PDF XML (JATS)

References


Adamus, A. (1993). Porównanie zdolności do androgenezy u różnych genotypów z rodziny Cruciferae [Comparison of the ability to androgenesis in different genotypes in Cruciferae family]. In O lepszą jakość produktów ogrodniczych, 2 grudnia 1993, Kraków, Polska [For better quality of horticultural crops, December 2, 1993, Cracow, Poland] (pp. 349–352). Wydział Ogrodniczy, Akademia Rolnicza im H. Kołłątaja w Krakowie.

Adamus, A. (1994). Androgegeneza u Raphanus sativus i Brassica oleracea var. italica, przeżywalność i ploidalność roślin uzyskanych z zarodków [Androgenesis in Raphanus sativus and Brassica oleracea var. italica, survival and ploidy of obtained embryos]. Prace Ogrodu Botanicznego PAN, 5–6, 507–515.

Adamus, A. (1998). Ploidy level of androgenic Brassica oleracea var. gemmifera plants. Prace Naukowe Uniwersytetu Śląskiego w Katowicach, 1696, 264–269.

Adamus, A. (2001). Androgenesis in Polish Brassica oleracea L. genotypes. In B. Bohanec (Ed.), Biotechnological approaches for utilization of gametic cells, Bled, Slovenia, July 1–5, 2000 (pp. 133–136). Office for Official Publications of the European Communities.

Adamus, A., & Michalik, B. (2003). Anther cultures of carrot (Daucus carota L.). Folia Horticulturae, 15, 49–58.

Adamus, A., Chachlowska, D., Domnicz, B., & Zawiślak, E. (2017). Ocena pokolenia DHR1 podwojonych haploidów kapusty pekińskiej [Evaluation of DHR1, a generation of double haploids of Chinese cabbage]. In J. Mazur & A. Lis-Krzyścin (Eds.), Ziemia, roślina, człowiek, 20–21 września 2017, Kraków, Polska [Earth, Plant, Human, September 20–21, 2017, Cracow, Poland] (p. 136). Wydział Ogrodniczy, Uniwersytet Rolniczy im H. Kołłątaja w Krakowie.

Adamus, A., Chachlowska, D., Samek, L., Kiełkowska, A., & Pieniążek, U. (2018). Ocena morfologiczna i płodność podwojonych haploidów kapusty pekińskiej (Brassica rapa L. ssp.pekinensis) [Evaluation of morphology and fertility of double haploids of Brassica rapa L. ssp. pekinensis]. In Genetyka, hodowla i biotechnologia roślin – osiągnięcia, wyzwania, perspektywy, 25–27 czerwca 2018, Lublin, Polska [Genetics, breeding, and plant biotechnology – Achievements, challenges, perspectives, June 25–27, 2018, Lublin, Poland] (p. 32). Uniwersytet Przyrodniczy w Lublinie.

Adamus, A., Madej, D., Żukowska, E., & Michalik, B. (2005). Przydatność linii podwojonych haploidów do hodowli mieszańcowej cebuli [Utilization of double haploid lines in onion breeding]. In B. Michalik & E. Żurawicz (Eds.), Zmienność genetyczna i jej wykorzystanie w hodowli roślin ogrodniczych [Genetic variability and its utilization in breeding of horticultural crops] (pp. 55–59). ISiK Skierniewice.

Adamus, A., & Samek, L. (2006). Wydajność androgenezy kapusty głowiastej (Brassica oleracea L. var. capitata) oraz ocena cytologiczna otrzymanych roślin [Effectiveness of androgenesis in cabbage (Brassica oleracea L. var. capitata) and cytology of obtained plants]. In T. Adamski & M. Surma (Eds.), Haploidy i linie podwojonych haploidów w genetyce i hodowli roślin [Haploids and doubled haploid lines in genetics and plant breeding] (pp. 181–185). PAGEN Centre of Excellence in Plant Agrobiology and Molecular Genetics.

Adamus, A., Samek, L., & Ciepichał, A. (2002). Indukcja androgenezy u kapusty głowiastej białej metodą kultur pylników i izolowanych mikrospor [Induction of androgenesis in cabbage using anther and isolated microspore cultures]. Zeszyty Problemowe Postępów Nauk Rolniczych, 488, 301–307.

Adamus, A., Szklarczyk, M., & Kiełkowska, A. (2021). Haploid and doubled haploid plant production in Brassica rapa L. subsp. pekinensis via microspore culture. In J. M. Segui-Simarro (Ed.), Doubled haploid technology (pp. 181–199). Humana Press. https://doi.org/10.1007/978-1-0716-1335-1_11

Ankele, E., Heberle-Bors, E., Pfosser, M. F., & Hofinger, B. J. (2005). Searching for mechanisms leading to albino plant formation in cereals. Acta Physiologie Plantarum, 27, 651–664. https://doi.org/10.1007/s11738-005-0069-4

Babula-Skowrońska, D., Ludwików, A., Cieśla, A., Olejnik, A., Cegielska-Taras, T., Bartkowiak-Broda, I., & Sadowski, J. (2015). Involvement of genes encoding ABI1 protein phosphatases in the response of Brassica napus L. to drought stress. Plant Molecular Biology, 88(4–5), 445–457. https://doi.org/10.1007/s11103-015-0334-x

Barański, R. (1996). In vitro gynogenesis in red beet (Beta vulgaris L.): Effects of ovule culture conditions. Acta Societatis Botanicorum Poloniae, 65, 57–60. https://doi.org/10.5586/asbp.1996.010

Barański, R. (2000). Application of a rapid glucose-6-phosphate isomerase assay in white cabbage breeding. Acta Physiologia Plantarum, 22, 45–51. https://doi.org/10.1007/s11738-000-0007-4

Bednarek, P. T., Orłowska, R., Koebner, R. M. D., & Zimny, J. (2007). Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.). BMC Plant Biology, 7, Article 10. https://doi.org/10.1186/1471-2229-7-10

Bohanec, B. (2002). Doubled-haploid onions. In H. D. Rabinowitch & L. Currah (Eds.), Allium crop science: Recent advances (pp. 145–157). CABI Publishing. https://doi.org/10.1079/9780851995106.0145

Börner, T., Aleynikova, A. Y., Zubo, Y. O., & Kusnetsov, V. V. (2015). Chloroplast RNA polymerases: Role in chloroplast biogenesis. Biochimica et Biophysica Acta – Bioenergetics, 1847, 761–769. https://doi.org/10.1016/j.bbabio.2015.02.004

Caredda, S., Doncoeur, C., Devaux, P., Sangwan, R. S., & Clément, C. (2000). Plastid differentiation during androgenesis in albino and non-albino producing cultivars of barley (Hordeum vulgare L.). Sexual Plant Reproduction, 13, 95–104. https://doi.org/10.1007/s004970000043

Cegielska-Taras, T. (2004). Doubled haploids in oilseed rape (Brassica napus L.) breeding. Rośliny Oleiste – Oiseed Crops, 25, 345–352.

Cegielska-Taras, T., Nogala-Kałucka, M., Szala, L., & Siger, A. (2016). Study of variation of tocochromanol and phytosterol contents in black and yellow seeds of Brassica napus L. doubled haploid populations. Acta Scientiarum Polonorum Alimentaria, 15(3), 321–332. https://doi.org/10.17306/J.AFS.2016.3.31

Cegielska-Taras, T., & Pniewski, T. (2011). The use of herbicides in biotech oilseed rape cultivation and in generation of transgenic homozygous plants of winter oilseed rape (Brassica napus L.). In M. N. A. E. Hasaneen (Ed.), Herbicides – Mechanisms and mode of action (pp. 125–136). InTech. https://doi.org/10.5772/32601

Cegielska-Taras, T., Pniewski, T., & Szała, L. (2008). Transformation of microspore-derived embryos of winter oilseed rape (Brassica napus L.) using Agrobacterium tumefaciens. Journal of Applied Genetics, 49(4), 343–347. https://doi.org/10.1007/BF03195632

Cegielska-Taras, T., Szała, L., Matuszczak, M., Babula, D., Mikołajczyk, K., Popławska, W., Sosnowska, K., Hernacki, B., Olejnik, A., & Bartkowiak-Broda, I. (2015). Doubled haploids as a material for biotechnological manipulation and a modern tool for breeding of oilseed rape (Brassica napus L.). BioTechnologia, 96(1), 7–18. https://doi.org/10.5114/bta.2015.54169

Cegielska-Taras, T., Szała, L., Nałęczyńska, A., Kołodziej, K., & Ogrodowczyk, M. (1999). In vitro selection for high erucic acid content in microspore-derived embryos of winter oilseed rape (Brassica napus L.). Journal of Applied Genetics, 40(4), 305–315.

Cegielska-Taras, T., Tykarska, T., Szała, L., Kuraś, L., & Krzymański, J. (2002). Direct plant development from microspore-derived embryos of winter oilseed rape Brassica napus L. ssp.oleifera (DC.) Metzger. Euphytica, 124(3), 341–347. https://doi.org/10.1023/A:1015785717106

Chaikam, V., Nair, S. K., Babu, R., Martinez, L., Tejomurtula, J., & Boddupalli, P. M. (2015). Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theoretical and Applied Genetics, 128(1), 159–171. https://doi.org/10.1007/s00122-014-2419-3

Cichy, H., Budzianowski, G., Cegielska-Taras, T., & Szała, L. (2005). Odmiana rzepaku ozimego wyhodowana przy użyciu podwojonych haploidów [Winter oilseed rape cultivar developed by the use of doubled haploids]. Rośliny Oleiste – Oilseed Crops, 26, 589–593.

Clement, C., & Pacini, E. (2001). Anther plastids in angiosperms. The Botanical Review, 67, 54–73. https://doi.org/10.1007/BF02857849

Combik, M., Adamus, A., & Michalik, B. (2006). Zmienność cech linii DH kapusty głowiastej białej otrzymanych z mieszańców F1 dwóch linii wsobnych [Variability of traits of DH lines of cabbage obtained from F1 hybrids of two inbreds]. In T. Adamski & M. Surma (Eds.), Haploidy i linie podwojonych haploidów w genetyce i hodowli roślin [Haploids and doubled haploid lines in genetics and plant breeding] (pp. 187–191). PAGEN Centre of Excellence in Plant Agrobiology and Molecular Genetics.

Czembor, P. C., Arseniuk, E., Czaplicki, A., Song, Q., Cregan, P. B., & Ueng, P. P. (2003). QTL mapping of partial resistance in winter wheat to Stagonospora nodorum blotch. Genome, 46(4), 546–554. https://doi.org/10.1139/g03-036

Day, A., & Ellis, T. H. N. (1984). Chloroplast DNA deletions associated with wheat plants regenerated from pollen: Possible basis for maternal inheritance of chloroplasts. Cell, 39, 359–368. https://doi.org/10.1016/0092-8674(84)90014-X

Day, A., & Ellis, T. H. N. (1985). Deleted forms of plastid DNA in albino plants from cereal anther culture. Current Genetics, 9, 671–678. https://doi.org/10.1007/BF00449820

Dohm, J. C., Minoche, A. E., Holtgräwe, D., Capella-Gutiérrez, S., Zakrzewski, F., Tafer, H., Rupp, O., Rosleff Sörensen, T., Stracke, R., Reinhardt, R., Goesmann, A., Kraft, T., Schulz, B., Stadler, P. F., Schmidt, T., Gabaldón, T., Lehrach, H., Weisshaar, B., & Himmelbauer, H. (2014). The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature, 505, 546–549. https://doi.org/10.1038/nature12817

Dunford, R., & Walden, R. M. (1991). Plastid genome structure and plastid-related transcript levels in albino barley plants derived from anther culture. Current Genetics, 20, 339–347. https://doi.org/10.1007/BF00318524

Dunwell, J. M. (2010). Haploids in flowering plants: Origins and exploitation. Plant Biotechnology Journal, 8, 377–424. https://doi.org/10.1111/j.1467-7652.2009.00498.x

Dziurka, K., Dziurka, M., Warchoł, M., Czyczyło-Mysza, I., Marcińska, I., Noga, A., Kapłoniak, K., & Skrzypek, E. (2019). Endogenous phytohormone profile during oat (Avena sativa L.) haploid embryo development. In Vitro Cellular & Developmental Biology – Plant, 55, 221–229. https://doi.org/10.1007/s11627-019-09967-5

Eurostat, & Cook, E. (Ed.). (2020). Agriculture, forestry and fishery statistics. 2020 edition. Publications Office of the European Union. https://doi.org/10.2785/143455

Gacek, K., Bayer, P. E., Anderson, R., Severn-Ellis, A., Wolko, J., Łopatyńska, A., Matuszczak, M., Bocianowski, J., Edwards, D., & Batley, J. (2021). QTL genetic mapping study for traits affecting meal quality in winter oilseed rape (Brassica napus L.). Genes, 12, Article 1235. https://doi.org/10.3390/genes12081235

Gacek, K., Bayer, P. E., Bartkowiak-Broda, I., Szala, L., Bocianowski, J., Edwards, D., & Batley, J. (2017). Genome-wide association study of genetic control of seed fatty acid biosynthesis in Brassica napus. Frontiers in Plant Science, 7, Article 2062. https://doi.org/10.3389/fpls.2016.02062

Gajecka, M., Marzec, M., Chmielewska, B., Jelonek, J., Zbieszczyk, J., & Szarejko, I. (2020). Plastid differentiation during microgametogenesis determines green plant regeneration in barley microspore culture. Plant Science, 291, Article 110321. https://doi.org/10.1016/j.plantsci.2019.110321

Gajecka, M., Marzec, M., Chmielewska, B., Jelonek, J., Zbieszczyk, J., & Szarejko, I. (2021). Changes in plastid biogenesis leading to the formation of albino regenerants in barley microspore culture. BMC Plant Biology, 21, Article 22. https://doi.org/10.1186/s12870-020-02755-z

Gośka, M. (1985). Sugar beet haploids obtained in the in vitro culture. Bulletin of the Polish Academy of Sciences: Biological Sciences, 33, 31–33.

Gośka, M. (1986). Kultury tkankowe i ich możliwości wykorzystania w hodowli buraka [Tissue cultures and the feasibility of their utilization in breeding]. Biuletyn Branżowy Hodowli Roślin i Nasiennictwa, 1–3, 46–51.

Gośka, M. (1997). Haploidy i podwojone haploidy buraka cukrowego (Beta vulgaris L.) oraz możliwości ich wykorzystania w hodowli [Haploids and doubled haploids of sugar beet (Beta vulgaris L.) and the feasibility of their utilization in breeding]. IHAR.

Gośka, M. (1999). Kultury tkankowe w hodowli buraka cukrowego [Tissue culture in sugar beet breeding]. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, 212, 115–124.

Grzebelus, E., & Adamus, A. (2004). Effect of anti-mitotic agents on development and genome doubling of gynogenic onion (Allium cepa L.) embryos. Plant Science, 167, 569–574. https://doi.org/10.1016/j.plantsci.2004.05.001

Guha, S., & Maheshwari, S. C. (1964). In vitro production of embryos from anthers of Datura. Nature, 204, 497. https://doi.org/10.1038/204497a0

Hallahan, B. F., Fernandez-Tendero, E., Fort, A., Ryder, P., Dupouy, G., Deletre, M., Curley, E., Brychkova, G., Schulz, B., & Spillane, C. (2018). Hybridity has a greater effect than paternal genome dosage on heterosis in sugar beet (Beta vulgaris). BMC Plant Biology, 18, Article 120. https://doi.org/10.1186/s12870-018-1338-x

Hanaoka, M., Kanamaru, K., Fujiwara, M., Takahashi, H., & Tanaka, K. (2005). Glutamyl-tRNA mediates a switch in RNA polymerase use during chloroplast biogenesis. EMBO Reports, 6, 545–550. https://doi.org/10.1038/sj.embor.7400411

He, T., Yang, Y., Tu, S. B., Yu, M. Q., & Li, X. F. (2006). Selection of interspecific hybrids for anther culture of indica rice. Plant Cell, Tissue and Organ Culture, 86, 271–277. https://doi.org/10.1007/s11240-006-9117-z

Hosemans, D., & Bossoutrot, D. (1983). Induction of haploid plants from in vitro culture of unpollinated beet ovules (Beta vulgaris L.). Zeitschrift fur Pflanzenzuchtung, 91, 74–77.

Idziak-Helmcke, D., Warzecha, T., Sowa, M., Warchoł, M., Dziurka, K., Czyczyło-Mysza, I., & Skrzypek, E. (2020). 3-D nucleus architecture in oat × maize addition lines. International Journal of Molecular Sciences, 21, Article 4280. https://doi.org/10.3390/ijms21124280

Jarvis, P., & López-Juez, E. (2013). Biogenesis and homeostasis of chloroplasts and other plastids. Nature Reviews Molecular Cell Biology, 20, 787–802. https://doi.org/10.1038/nrm3702

Juzoń, K., Idziak-Helmcke, D., Rojek-Jelonek, M., Warzecha, T., Warchoł, M., Czyczyło-Mysza, I., Dziurka, K., & Skrzypek, E. (2020). Functioning of the photosynthetic apparatus in response to drought stress in oat × maize addition lines. International Journal of Molecular Sciences, 21, Article 6958. https://doi.org/10.3390/ijms21186958

Kasha, K. J., & Kao, K. N. (1970). High frequency haploid production in barley Hordeum vulgare L. Nature, 225, 874–876. https://doi.org/10.1038/225874a0

Katalog odmian warzyw kwiatów i ziół [Catalogue of cultivars of vegetables, flowers, and herbs]. (2020). PlantiCo.

Kiełkowska, A., & Adamus, A. (2010). In vitro culture of unfertilized ovules in carrot (Daucus carota L.). Plant Cell Tissue and Organ Culture, 102, 309–319. https://doi.org/10.1007/s11240-010-9735-3

Kiełkowska, A., Adamus, A., & Baranski, R. (2014). An improved protocol for carrot haploid and doubled haploid plant production using induced parthenogenesis and ovule excision in vitro. In Vitro Cellular Developmental Biology – Plant, 50(3), 376–383. https://doi.org/10.1007/s11627-014-9597-1

Kiełkowska, A., Adamus, A., & Baranski, R. (2018). Haploid and doubled haploid plant production in carrot using induced parthenogenesis and ovule excision in vitro. In V. Loyola-Vargas & N. Ochoa-Alejo (Eds.), Plant cell culture protocols (pp. 301–315). Humana Press. https://doi.org/10.1007/978-1-4939-8594-4_21

Klimek-Chodacka, M., & Baranski, R. (2013). Comparison of haploid and doubled haploid sugar beet clones in their ability to micropropagate and regenerate. Electronic Journal of Biotechnology, 16(2). https://doi.org/10.2225/vol16-issue2-fulltext-3

Klimek-Chodacka, M., & Barański, R. (2011). Zmienność stopnia ploidalności pędów buraka cukrowego w kulturze in vitro [Variability in ploidy in in vitro culture of sugar beet shoots]. Episteme, 12, 149–153.

Konieczny, R., Bohdanowicz, J., Czaplicki, A. Z., & Przywara, L. (2005). Extracellular matrix surface network during plant regeneration in wheat anther culture. Plant Cell, Tissue and Organ Culture, 83, 201–208. https://doi.org/10.1007/s11240-005-5771-9

Kopec, P. M., Mikolajczyk, K., Jajor, E., Perek, A., Nowakowska, A., Obermeier, C., Chawla, H. S., Korbas, M., Bartkowiak-Broda, I., & Karlowski, W. M. (2021). Local duplication of TIR-NBS-LRR gene marks clubroot resistance in Brassica napus cv. Tosca. Frontiers in Plant Science, 12, Article 639631. https://doi.org/10.3389/fpls.2021.639631

Krzewska, M., Czyczyło-Mysza, I., Dubas, E., Gołębiowska-Pikania, G., Golemiec, E., Stojałowski, S., Chrupek, M., & Żur, I. (2012). Quantitative trait loci associated with androgenic responsiveness in triticale (×Triticosecale Wittm.) anther culture. Plant Cell Reports, 31, 2099–2108. https://doi.org/10.1007/s00299-012-1320-2

Krzewska, M., Czyczyło-Mysza, I., Dubas, E., Gołębiowska-Pikania, G., & Żur, I. (2015). Identification of QTLs associated with albino plant formation and some new facts concerning green versus albino ratio determinants in triticale (×Triticosecale Wittm.) anther culture. Euphytica, 206, 263–278. https://doi.org/10.1007/s10681-015-1509-x

Krzewska, M., Dubas, E., Gołębiowska, G., Nowicka, A., Janas, A., Zieliński, K., Surówka, E., Kopeć, P., Mielczarek, P., & Żur, I. (2021). Comparative proteomic analysis provides new insights into regulation of microspore embryogenesis induction in winter triticale (×Triticosecale Wittm.) after 5-azacytidine treatment. Scientific Reports, 11, Article 22215. https://doi.org/10.1038/s41598-021-01671-y

Krzewska, M., Gołębiowska-Pikania, G., Dubas, E., Gawin, M., & Żur, I. (2017). Identification of proteins related to microspore embryogenesis responsiveness in anther cultures of winter triticale (×Triticosecale Wittm.). Euphytica, 213, Article 192. https://doi.org/10.1007/s10681-017-1978-1

Lantos, C., Bóna, L., Boda, K., & Pauk, J. (2014). Comparative analysis of in vitro anther- and isolated microspore culture in hexaploid triticale (×Triticosecale Wittmack) for androgenic parameters. Euphytica, 197, 27–37. https://doi.org/10.1007/s10681-013-1031-y

Lantos, C., Páricsi, S., Zofajova, A., Weyen, J., & Pauk, J. (2006). Isolated microspore culture of wheat (Triticum aestivum L.) with Hungarian cultivars. Acta Biologica Szegediensis, 50, 31–35.

Leja, M., Mareczek, A., Adamus, A., Strzetelski, P., & Combik, M. (2006). Some antioxidative properties of selected white cabbage DH lines. Folia Horticulturae, 18(1), 31–40.

Levan, A. (1945). A haploid sugar beet after colchicine treatment. Hereditas, 31, 399–410. https://doi.org/10.1111/j.1601-5223.1945.tb02760.x

Lichter, R. (1982). Induction of haploid plants from isolated pollen of Brassica napus. Zeitschrift für Pflanzenphysiologie, 105, 427–434. https://doi.org/10.1016/S0044-328X(82)80040-8

Machczyńska, J., Orłowska, R., Mańkowski, D. R., Zimny, J., & Bednarek, P. T. (2014). DNA methylation changes in triticale due to in vitro culture plant regeneration and consecutive reproduction. Plant Cell, Tissue and Organ Culture, 119(2), 289–299. https://doi.org/10.1007/s11240-014-0533-1

Machczyńska, J., Orłowska, R., Zimny, J., & Bednarek, P. T. (2014). Extended metAFLP approach in studies of the tissue culture induced variation (TCIV) in case of triticale. Molecular Breeding, 34, 845–854. https://doi.org/10.1007/s11032-014-0079-2

Machczyńska, J., Zimny, J., & Bednarek, P. (2015). Tissue culture-induced genetic and epigenetic variation in triticale (×Triticosecale spp. Wittmack ex A. Camus 1927) regenerants. Plant Molecular Biology, 89(3), 279–292. https://doi.org/10.1007/s11103-015-0368-0

Makowska, K., Kałużniak, M., Oleszczuk, S., Zimny, J., Czaplicki, A., & Konieczny, R. (2017). Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Plant Cell, Tissue and Organ Culture, 131(2), 247–257. https://doi.org/10.1007/s11240-017-1280-x

Makowska, K., & Oleszczuk, S. (2014). Albinism in barley androgenesis. Plant Cell Reports, 33(3), 385–392. https://doi.org/10.1007/s00299-013-1543-x

Makowska, K., Oleszczuk, S., & Zimny, J. (2017). The effect of copper on plant regeneration in barley microspore culture. Czech Journal of Genetics and Plant Breeding, 53(1), 17–22. https://doi.org/10.17221/82/2016-cjgpb

Makowska, K., Oleszczuk, S., Zimny, A., Czaplicki, A., & Zimny, J. (2015). Androgenic capability among genotypes of winter and spring barley. Plant Breeding, 134, 668–674. https://doi.org/10.1111/pbr.12312

Marcińska, I., Nowakowska, A., Skrzypek, E., & Czyczyło-Mysza, I. (2013). Production of doubled haploids in oat (Avena sativa L.) by pollination with maize (Zea mays L.). Central European Journal of Biology, 8(3), 306–313. https://doi.org/10.2478/s11535-013-0132-2

Maréchal, A., & Brisson, N. (2010). Recombination and the maintenance of plant organelle genome stability. New Phytologist, 186, 299–317. https://doi.org/10.1111/j.1469-8137.2010.03195.x

Matuszczak, M., Tokarczuk, I., Szała, L., Cegielska-Taras, T., Krzymanski, J., & Bartkowiak-Broda, I. (2011). The localization of many QTLs on the genetic map of winter oilseed rape (Brassica napus L.). In 13th International Rapeseed Congress, June 5–9, 2011, Prague, Czech Republic (pp. 1026–1029). International Consultative Research Group on Rapeseed.

Michalik, B., Adamus, A., & Nowak, E. (1997). Induction of haploid plants in Polish onion cultivars. Acta Horticulturae, 447, 377–378. https://doi.org/10.17660/ActaHortic.1997.447.79

Michalik, B., Adamus, A., & Nowak, E. (2000). Gynogenesis in Polish onion cultivars. Journal of Plant Physiology, 156, 211–216. https://doi.org/10.1016/S0176-1617(00)80308-9

Michalik, B., Adamus, A., & Nowak, E. (2001). Rośliny haploidalne w hodowli warzyw w Polsce [Haploids in breeding of vegetable crops in Poland]. Folia Horticulturae, 13(1A), 25–29.

Mikolajczyk, K., Dabert, M., Karlowski, W. M., Spasibionek, S., Nowakowska, J., Cegielska-Taras, T., & Bartkowiak-Broda, I. (2010). Allele-specific SNP markers for the new linolenic mutant of winter oilseed rape. Plant Breeding, 129, 502–507. https://doi.org/10.1111/j.1439-0523.2009.01730.x

Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33, 453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9

Mozgova, G. V., Zaitseva, O. I., & Lemesh, V. A. (2012). Structural changes in chloroplast genome accompanying albinism in anther culture of wheat and triticale. Cereal Research Communications, 40, 467–475. https://doi.org/10.1556/CRC.2012.0007

Muñoz-Amatriaín, M., Castillo, A. M., Chen, X. W., Cistué, L., & Vallés, M. P. (2008). Identification and validation of QTLs for green plant percentage in barley (Hordeum vulgare L.) anther culture. Molecular Breeding, 22, 119–129. https://doi.org/10.1007/s11032-008-9161-y

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Noga, A., Skrzypek, E., Warchoł, M., Czyczyło-Mysza, I., Dziurka, K., Marcińska, I., Juzoń, K., Warzecha, T., Sutkowska, A., Nita, Z., & Werwińska, K. (2016). Conversion of oat (Avena sativa L.) haploid embryos into plants in relation to embryo developmental stage and regeneration media. In Vitro Cellular & Developmental Biology – Plant, 52, 590–597. https://doi.org/10.1007/s11627-016-9788-z

Nowakowska, A., Skrzypek, E., Marcińska, I., Czyczyło-Mysza, I., Dziurka, K., Juzoń, K., Cyganek, K., & Warchoł, M. (2015). Application of chosen factors in the wide crossing method for the production of oat doubled haploids. Open Life Sciences, 10(1), 112–118. https://doi.org/10.1515/biol-2015-0014

Nowicka, A., Juzoń, K., Krzewska, M., Dziurka, M., Dubas, E., Kopeć, P., Zieliński, K., & Żur, I. (2019). Chemically-induced DNA de-methylation alters the effectiveness of microspore embryogenesis in triticale. Plant Science, 287, Article 110189. https://doi.org/10.1016/j.plantsci.2019.110189

Oleszczuk, S., & Banaszak, Z. (2016). Triticale. In A. S. Mason (Ed.), Polyploidy and hybridization for crop improvement (pp. 281–317). CRC Press. https://doi.org/10.1201/9781315369259-12

Oleszczuk, S., Grzechnik, N., Mason, A. S., & Zimny, J. (2019). Heritability of meiotic restitution and fertility restoration in haploid triticale. Plant Cell Reports, 38(12), 1515–1525. https://doi.org/10.1007/s00299-019-02462-6

Oleszczuk, S., Rabiza-Swider, J., Zimny, J., & Lukaszewski, A. J. (2011). Aneuploidy among androgenic progeny of hexaploid triticale (×Triticosecale Wittmack). Plant Cell Reports, 30(4), 575–586. https://doi.org/10.1007/s00299-010-0971-0

Oleszczuk, S., Sowa, S., & Zimny, J. (2004). Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (×Triticosecale Wittmack) cv. Bogo. Plant Cell Reports, 22, 885–893. https://doi.org/10.1007/s00299-004-0796-9

Oleszczuk, S., Sowa, S., & Zimny, J. (2006). Androgenic response to pre-culture stress in the microspore cultures of barley. Protoplasma, 228(1–3), 95–100. https://doi.org/10.1007/s00709-006-0179-x

Oleszczuk, S., Tyrka, M., & Zimny, J. (2014). The origin of clones among androgenic regenerants of hexaploid triticale. Euphytica, 198(3), 325–336. https://doi.org/10.1007/s10681-014-1109-1

Oleszczuk, S., Zimny, J., & Makowska, K. (2021). Badania nad optymalizacją metod indukowanego podwajania garnituru chromosomowego w haploidalnych regenerantach pszenżyta [Optimization of induced chromosome doubling methods in haploid regenerants of triticale]. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, 295, 107–110.

Organization for Economic Co-operation Development, & Food and Agriculture Organization. (2020). Sugar. In OECD–FAO agricultural outlook 2020–2029 (pp. 150–161). OECD Publishing; FAO. https://doi.org/10.1787/1112c23b-en

Orłowska, R., Machczyńska, J., Oleszczuk, S., Zimny, J., & Bednarek, P. T. (2016). DNA methylation changes and TE activity induced in tissue cultures of barley (Hordeum vulgare L.). Journal of Biological Research-Thessaloniki, 23, Article 19. https://doi.org/10.1186/s40709-016-0056-5

Orłowska, R., Pachota, K. A., Machczyńska, J., Niedziela, A., Makowska, K., Zimny, J., & Bednarek, P. T. (2020). Improvement of anther cultures conditions using the Taguchi method in three cereal crops. Electronic Journal of Biotechnology, 43, 8–15. https://doi.org/10.1016/j.ejbt.2019.11.001

Orłowska, R., Zimny, J., & Bednarek, P. T. (2021). Copper ions induce DNA sequence variation in zygotic embryo culture-derived barley regenerants. Frontiers in Plant Science, 11, Article 614837. https://doi.org/10.3389/fpls.2020.614837

Pfannschmidt, T., Blanvillain, R., Merendino, L., Courtois, F., Chevalier, F., Liebers, M., Grübler, B., Hommel, E., & Lerbs-Mache, S. (2015). Plastid RNA polymerases: Orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle. Journal of Experimental Botany, 66, 6957–6973. https://doi.org/10.1093/jxb/erv415

Popławska, W., Bartkowiak-Broda, I., & Szała, L. (2007). Genetic and breeding evaluation of haploid lines with restorer gene for CMS ogura system of winter oilseed rape (Brassica napus L.). Brassica, 9, 29–32.

Rogacz, M. (2019). Ekologiczna uprawa kapusty [Organic cabbage farming]. Małopolski Ośrodek Doradztwa Rolniczego. https://modr.pl/ technologie-ekologicznej-uprawy-rolniczej/strona/ekologiczna-uprawa-kapusty

Rogozińska, J. H., & Gośka, M. (1976). Growth and differentiation of sugar beet anthers and callus. The Bulletin of the Polish Academy of Sciences, 24, 57–60.

San Noeum, L. H. (1976). Haploides d’Hordeum vulgare L. par culture in vitro non fecondes [Non-fertilized ovaries of Hordeum vulgare L. cultured in vitro]. Annales de l’amélioration des plantes, 26, 751–754.

Sánchez-Díaz, R. A., Castillo, A. M., & Vallés, M. P. (2013). Microspore embryogenesis in wheat: new markers genes for early, middle and late stages of embryo development. Plant Reproduction, 26, 287–296. https://doi.org/10.1007/s00497-013-0225-8

Sidhu, P. K., Howes, N. K., Aung, T., Zwer, P. K., & Davies, P. A. (2006). Factors affecting haploid production following oat × maize hybridization. Plant Breeding, 125, 1–6. https://doi.org/10.1111/j.1439-0523.2006.01206.x

Siger, A., Michalak, M., Cegielska-Taras, T., Szała, L., Lembicz, J., & Nogala-Kałucka, M. (2015). Genotype and environment effects on tocopherol and plastochromanol-8 contents of winter oilseed rape doubled haploid lines derived from F1 plants of the cross between yellow and black seeds. Industrial Crops and Products, 65, 134–141. https://doi.org/10.1016/j.indcrop.2014.12.006

Siger, A., Michalak, M., Lembicz, J., Nogala-Kałucka, M., Cegielska-Taras, T., & Szała, L. (2018). Genotype-environment interaction on tocochromanol and plastochromanol-8 contents in seeds of doubled haploids obtained from F1 hybrid black × yellow seeds of winter oilseed rape (Brassica napus L.). Journal of the Science of Food and Agriculture, 98, 3263–3270. https://doi.org/10.1002/jsfa.8829

Skrzypek, E., Warchoł, M., Czyczyło-Mysza, I., Juzoń, K., Dziurka, K., & Marcińska, I. (2021). Oat doubled haploid production through wide hybridization with maize. In J. M. Segui-Simarro (Ed.), Doubled haploid technology (pp. 323–332). Humana. https://doi.org/10.1007/978-1-0716-1315-3_18

Skrzypek, E., Warchoł, M., Czyczyło-Mysza, I., Marcińska, I., Nowakowska, A., Dziurka, K., Juzoń, K., & Noga, A. (2016). The effect of light intensity on the production of oat (Avena sativa L.) doubled haploids through oat × maize crosses. Cereal Research Communications, 44(3), 490–500. https://doi.org/10.1556/0806.44.2016.007

Skrzypek, E., Warzecha, T., Noga, A., Warchoł, M., Czyczyło-Mysza, I., Dziurka, K., Marcińska, I., Kapłoniak, K., Sutkowska, A., Nita, Z., Werwińska, K., Idziak-Helmcke, D., Rojek, M., & Hosiawa-Barańska, M. (2018). Complex characterization of oat (Avena sativa L.) lines obtained by wide crossing with maize (Zea mays L.). PeerJ, 6, Article e5107. https://doi.org/10.7717/peerj.5107

Sohrabi, S., Abdollahi, M. R., Mirzaie-Asl, A., Koulaei, H. E., Aghaeezadeh, M., & Seguí-Simarro, J. M. (2021). A refined method for ovule culture in sugar beet (Beta vulgaris L.). Plant Cell, Tissue and Organ Culture, 146, 259–267. https://doi.org/10.1007/s11240-021-02065-8

Stevanato, P., Chiodi, C., Broccanello, C., Concheri, G., Biancardi, E., Pavli, O., & Skaracis, G. (2019). Sustainability of the sugar beet crop. Sugar Tech, 21, 703–716. https://doi.org/10.1007/s12355-019-00734-9

Szała, L., Kaczmarek, Z., Popławska, W., Liersch, A., Wójtowicz, M., Matuszczak, M., Biliński, Z. R., Sosnowska, K., Stefanowicz, M., & Cegielska-Taras, T. (2019). Estimation of seed yield in oilseed rape to identify the potential of semi-resynthesized parents for the development of new hybrid cultivars. PLoS ONE, 14(4), Article e0215661. https://doi.org/10.1371/journal.pone.0215661

Szała, L., Sosnowska, K., & Cegielska-Taras, T. (2020). Induced chromosome doubling in microspores and regenerated haploid plants of Brassica napus. Acta Biologica Cracoviensia, Series Botanica, 62(1), 23–31. https://doi.org/10.24425/abcsb.2019.127750

Szała, L., Sosnowska, K., Popławska, W., Liersch, A., Olejnik, A., Kozłowska, K., Bocianowski, J., & Cegielska-Taras, T. (2016). Development of new restorer lines for CMS ogura system with the use of resynthesized oilseed rape (Brassica napus L.). Breeding Science, 66(4), 516–521. https://doi.org/10.1270/jsbbs.15042

Taira, T., & Larter, E. N. (1978). Factors influencing development of wheat-rye hybrid embryos in vitro. Crop Science, 18, 348–350. https://doi.org/d8tkzc

Tyrka, M., Oleszczuk, S., Rabiza-Swider, J., Wos, H., Wedzony, M., Zimny, J., & Lukaszewski, A. J. (2018). Populations of doubled haploids for genetic mapping in hexaploid winter triticale. Molecular Breeding, 38(4), Article 46. https://doi.org/10.1007/s11032-018-0804-3

Warchoł, M., Czyczyło-Mysza, I., Marcińska, I., Dziurka, K., Noga, A., & Skrzypek, E. (2018). The effect of genotype, media composition, pH and sugar concentrations on oat (Avena sativa L.) doubled haploid production through oat × maize crosses. Acta Physiologiae Plantarum, 40, Article 93. https://doi.org/10.1007/s11738-018-2669-9

Warchoł, M., Skrzypek, E., Nowakowska, A., Marcińska, I., Czyczyło-Mysza, I., Dziurka, K., Juzoń, K., & Cyganek, K. (2016). The effect of auxin and genotype on the production of Avena sativa L. doubled haploid lines. Plant Growth Regulation, 78, 155–165. https://doi.org/10.1007/s10725-015-0082-6

Warzecha, R., Sowa, S., Salak-Warzecha, K., Oleszczuk, S., Śliwińska, E., & Zimny, J. (2005). Doubled haploids in production of male sterility maintaining triticale (Triticosecale Wittmack) lines. Acta Physiologiae Plantarum, 27(2), 245–250. https://doi.org/10.1007/s11738-005-0029-z

Wędzony, M. (2003). Protocol for anther culture in hexaploid triticale (×Triticosecale Wittm.). In M. Maluszynski, K. J. Kasha, B. P. Forster, & I. Szarejko (Eds.), Doubled haploid production in crop plants: A manual (pp. 123–129). Kluwer Academic Publishers. https://doi.org/10.1007/978-94-017-1293-4_19

Wędzony, M., Forster, B. P., Żur, I., Golemiec, E., Szechyńska-Hebda, M., Dubas, E., & Gołębiowska, G. (2009). Progress in doubled haploid technology in higher plants. In A. Touraev, B. P. Forster, & S. Mohan Jain (Eds.), Advances in haploid production in higher plants (pp. 1–34). Springer.

Wiśniewska, E., & Majewska-Sawka, A. (2007). Arabinogalactan-proteins stimulate the organogenesis of guard cell protoplasts-derived callus in sugar beet. Plant Cell Reports, 26, 1457–1467. https://doi.org/10.1007/s00299-007-0348-1

Wiśniewska, E., & Majewska-Sawka, A. (2008). The differences in cell wall composition in leaves and regenerating protoplasts of Beta vulgaris and Nicotiana tabacum. Biologia Plantarum, 52, 634–641. https://doi.org/10.1007/s10535-008-0124-2

Wolko, J., Dobrzycka, A., Bocianowski, J., Szala, L., Cegielska-Taras, T., Bartkowiak Broda, I., & Gacek, K. (2020). Genetic variation of traits affecting meal quality in black × yellow seeded doubled haploid population of winter oilseed rape (Brassica napus L). Agronomy Research, 18(3), 2259–2270. https://doi.org/10.15159/ar.20.209

Yagi, Y., & Shiina, T. (2014). Recent advances in the study of chloroplast gene expression and its evolution. Frontiers in Plant Science, 5, Article 61. https://doi.org/10.3389/fpls.2014.00061

Yamagishi, M. (2002). Heterogeneous plastid genomes in anther culture-derived albino rice plants. Euphytica, 123, 67–74. https://doi.org/10.1023/A:1014493316433

Zhuang, J. J., & Xu, J. (1983). Increasing differentiation frequencies in wheat pollen callus. In H. Hu & M. R. Veda (Eds.), Cell and tissue culture for cereal crop improvement (pp. 431–432). Science Press.

Zhuzhzhalova, T. P., Kolesnikova, E. O., Vasilchenko, E. N., & Cherkasova, N. N. (2020). Biotechnological methods as a tool for efficient sugar beet breeding. Vavilov Journal of Genetics and Breeding, 24, 40–47. https://doi.org/10.18699/VJ20.593

Zieliński, K., Krzewska, M., Żur, I., Juzoń, K., Kopeć, P., Nowicka, A., Moravčiková, J., Skrzypek, E., & Dubas, E. (2020). The effect of glutathione and mannitol on androgenesis in anther and isolated microspore cultures of rye (Secale cereale L.). Plant Cell, Tissue and Organ Culture, 140, 577–592. https://doi.org/10.1007/s11240-019-01754-9

Zimny, J., & Michalski, K. (2019). Development of in vitro culture techniques for advancement of rye (Secale cereale L.) breeding. Acta Biologica Cracoviensia, Series Botanica, 61(1), 7–15. https://doi.org/10.24425/abcsb.2019.127735

Zimny, J., Oleszczuk, S., Zimny, A., Makowska, K., & Czaplicki, A. (2021). Badanie reakcji mikrospor żyta na stres i warunki kultury in vitro [Rye microspores response of to stress and in vitro culture conditions]. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, 295, 189–192.

Żołnierkiewicz, J. (2019). Kapusta Korund – odmiana zalecana do uprawy ekologicznej [Cabbage Korund – A cultivar recommended to organic farming]. Rynek-Rolny.pl. https://www.rynek-rolny.pl/artykul/kapusta-korund-odmiana-mieszancowa-zalecana-do-uprawy-ekologicznej.html

Żur, I. (2007). Indukcja i regeneracja haploidów w kulturach izolowanych mikrospor przenżyta [Induction and regeneration of haploid plants in isolated microspore cultures of triticale]. Instytut Fizjologii Roślin im. Franciszka Górskiego PAN.

Żur, I., Dubas, E., Golemiec, E., Szechyńska-Hebda, M., Gołębiowska, G., & Wędzony, M. (2009). Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (×Triticosecale Wittm.). Plant Cell Reports, 28, 1279–1287. https://doi.org/10.1007/s00299-009-0730-2

Żur, I., Dubas, E., Golemiec, E., Szechyńska-Hebda, M., Janowiak, F., & Wędzony, M. (2008). Stress-induced changes important for effective androgenesis induction in isolated microspore culture of triticale (×Triticosecale Wittm.). Plant Cell, Tissue and Organ Culture, 94, 319–328. https://doi.org/10.1007/s11240-008-9360-6

Żur, I., Dubas, E., Krzewska, M., & Janowiak, F. (2015). Current insights into hormonal regulation of microspore embryogenesis. Frontiers in Plant Sciences, 6, Article 424. https://doi.org/10.3389/fpls.2015.00424

Żur, I., Dubas, E., Krzewska, M., Janowiak, F., Hura, K., Pociecha, E., Bączek-Kwinta, R., & Płażek, A. (2014). Antioxidant activity and ROS tolerance in triticale (×Triticosecale Wittm.) anthers affect the efficiency of microspore embryogenesis. Plant Cell, Tissue and Organ Culture, 119, 79–94. https://doi.org/10.1007/s11240-014-0515-3

Żur, I., Dubas, E., Krzewska, M., Kopeć, P., Nowicka, A., Surówka, E., Gawrońska, K., Gołębiowska, G., Juzoń, K., & Malaga, S. (2021). Triticale and barley microspore embryogenesis induction requires both reactive oxygen species generation and efficient system of antioxidative defence. Plant Cell, Tissue and Organ Culture, 145, 347–366. https://doi.org/10.1007/s11240-021-02012-7

Żur, I., Dubas, E., Krzewska, M., Sánchez-Díaz, R. A., Castillo, A. M., & Vallés, M. P. (2014). Changes in gene expression patterns associated with microspore embryogenesis in hexaploid triticale (×Triticosecale Wittm.). Plant Cell, Tissue and Organ Culture, 116, 261–267. https://doi.org/10.1007/s11240-013-0399-7

Żur, I., Dubas, E., Krzewska, M., Waligórski, P., Dziurka, M., & Janowiak, F. (2015). Hormonal requirements for effective induction of microspore embryogenesis in triticale (×Triticosecale Wittm.) anther cultures. Plant Cell Reports, 34, 47–62. https://doi.org/10.1007/s00299-014-1686-4

Żur, I., Dubas, E., Krzewska, M., Zieliński, K., Fodor, J., & Janowiak, F. (2019). Glutathione provides antioxidative defence and promotes microspore-derived embryo development in isolated microspore cultures of triticale (×Triticosecale Wittm.). Plant Cell Reports, 38, 195–209. https://doi.org/10.1007/s00299-018-2362-x

Żur, I., Gajecka, M., Dubas, E., Krzewska, M., & Szarejko, I. (2021). Albino plant formation in androgenic cultures: An old problem and new facts. In J. M. Segui-Simarro (Ed.), Doubled haploid technology (pp. 3–23). Humana. https://doi.org/10.1007/978-1-0716-1335-1_1




DOI: https://doi.org/10.5586/asbp.9128

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society