Polish Cryobanks: Research and Conservation of Plant Genetic Resources

Ewa Zimnoch-Guzowska, Paweł Chmielarz, Mikołaj K. Wawrzyniak, Beata P. Plitta-Michalak, Marcin Michalak, Małgorzata Pałucka, Urszula Wasileńczyk, Paulina Kosek, Dariusz Kulus, Anna Rucińska, Anna Mikuła

Abstract


To date, the use of liquid nitrogen (LN) in plant gene banks is relatively limited. Globally, in 2021, approximately 10,000 accessions were cryopreserved, and their explants were derived from in vitro plants. In Europe, out of 500 banks, only 20 use cryogenic temperatures to store plant germplasms. The implementation of seven conservation projects in Poland starting in the 1990s meant that the gene banking system in this country began to gradually develop. Plant gene bank is mainly based on the collection of seeds and makes little use of plant tissues, including those from in vitro culture. From the point of view of systematics, plant material belonging to spermatophytes dominates in Polish gene banks, while spore plants are rarely represented. This review represents the first summary of gene cryobank activities and resources in Poland. It contains a brief overview of the ex situ plant protection programs aimed at the use of LN and presents the characteristics of four existing gene cryobanks in this country. Special attention is devoted to the presentation of studies on the cryopreservation of seeds, as well as of plant tissues, such as embryonic axes and plumules of trees, and fern gametophytes, that make a permanent contribution to gene bank resources.

Keywords


seeds; wild species; forest trees; herbaceous plants; apples; crops; ferns

Full Text:

PDF XML (JATS)

References


Ballesteros, D., & Pence, V. C. (2018). Fern conservation: Spore, gametophyte, and sporophyte ex situ storage, in vitro culture, and cryopreservation. In H. Fernández (Ed.), Current advances in fern research (pp. 227–249). Springer. https://doi.org/10.1007/978-3-319-75103-0_11

Barra-Jiménez, A., Aronen, T. S., Alegre, J., & Toribio, M. (2015). Cryopreservation of embryogenic tissues from mature holm oak trees. Cryobiology, 70(2), 17–25. https://doi.org/10.1016/j.cryobiol.2015.02.006

Benelli, C. (2021). Plant cryopreservation: A look at the present and the future. Plants, 10, Article 2744. https://doi.org/10.3390/plants10122744

Berjak, P., Walker, M., Watt, M. P., & Mycock, D. (1999). Experimental parameters underlying failure or success in plant germplasm cryopreservation: A case study on zygotic axes of Quercus robur L. CryoLetters, 20, 251–262.

Bettoni, J. C., Bonnart, R., & Volk, G. M. (2021). Challenges in implementing plant shoot tip cryopreservation technologies. Plant Cell, Tissue and Organ Culture, 144, 21–24. https://doi.org/10.1007/s11240-020-01846-x

Bonnart, R., Waddell, J., Haiby, K., Widrlechner, M. P., & Volk, G. M. (2014). Cryopreservation of Populus trichocarpa and Salix dormant buds with recovery by grafting or direct rooting. CryoLetters, 35, 507–515.

Chalupa, V. (1988). Large scale micropropagation of Quercus robur L. using adenine-type cytokinins and thidiazuron to stimulate shoot proliferation. Biologia Plantarum, 30(6), 414–421. https://doi.org/10.1007/BF02890509

Chalupa, V. (1993). Vegetative propagation of oak (Quercus robur and Q. petraea) by cutting and tissue culture. Annals of Forest Science, 50(Suppl.1), 295s–307s. https://doi.org/10.1051/forest:19930730

Chmielarz, P. (1997). Preservation of Quercus robur L. embryonic axes in liquid nitrogen. In R. H. Ellis, M. Black, A. J. Murdoch, & T. D. Hong (Eds.), Basic and applied aspects of seed biology (pp. 765–769). Springer. https://doi.org/10.1007/978-94-011-5716-2_83

Chmielarz, P. (1999). Somatic embryogenesis of Quercus robur L. and cryopreservation of somatic embryos in liquid nitrogen. In T. Schröder & A. Wulf (Eds.), Fortschritte bei der Lagerungstechnologie von Eichensaatgut [Recent progress in the storage technology of acorns] (pp. 49–59). Parey. https://doi.org/10.5073/20210706-080736

Chmielarz, P. (2002). Sensitivity of Tilia cordata seeds to dehydration and temperature of liquid nitrogen. Dendrobiology, 47(Supplement), 71–77.

Chmielarz, P. (2007). Kriogeniczne przechowywanie nasion leśnych drzew liściastych z kategorii orthodox i suborthodox (intermediate) [Cryogenic storage of orthodox and suborthodox (intermediate) seeds of deciduous forest trees]. Bogucki Wydawnictwo Naukowe.

Chmielarz, P. (2009a). Cryopreservation of dormant European ash (Fraxinus excelsior) orthodox seeds. Tree Physiology, 29(10), 1279–1285. https://doi.org/10.1093/treephys/tpp064

Chmielarz, P. (2009b). Cryopreservation of dormant orthodox seeds of forest trees: Mazzard cherry (Prunus avium L.). Annals of Forest Science, 66(4), Article 405. https://doi.org/10.1051/forest/2009020

Chmielarz, P. (2010a). Cryopreservation of orthodox seeds of Alnus glutinosa. CryoLetters, 31(2), 139–146. https://doi.org/10.15258/sst.2010.38.1.15

Chmielarz, P. (2010b). Cryopreservation of conditionally dormant orthodox seeds of Betula pendula. Acta Physiologiae Plantarum, 32(3), 591–596. https://doi.org/10.1007/s11738-009-0437-6

Chmielarz, P. (2010c). Cryopreservation of the non-dormant orthodox seeds of Ulmus glabra. Acta Biologica Hungarica, 61(2), 224–233. https://doi.org/10.1556/ABiol.61.2010.2.10

Chmielarz, P. (2010d). Cryopreservation of dormant orthodox seeds of European hornbeam (Carpinus betulus). Seed Science and Technology, 38(1), 146–157. https://doi.org/10.15258/sst.2010.38.1.15

Chmielarz, P., & Walters, C. (2007). Desiccation sensitivity of white and black (red) oak embryonic axes. South African Journal of Botany, 73(3), 498–498. https://doi.org/10.1016/j.sajb.2007.04.042

Chmielarz, P., Grenier-de March, G., & de Boucaud, M. T. (2005). Cryopreservation of Quercus robur L. embryogenic calli. CryoLetters, 26(6), 349–356.

Chmielarz, P., Michalak, M., Pałucka, M., & Wasileńczyk, U. (2011). Successful cryopreservation of Quercus robur plumules. Plant Cell Reports, 30, 1405–1414. https://doi.org/10.1007/s00299-011-1049-3

Choudhary, R., Malik, S. K., Chaudhury, R., & Sharma, K. C. (2014). Long-term conservation of dormant buds of Prunus dulcis (Miller) DA Webb. using three different new cryotechniques. Romanian Biotechnological Letters, 19, 9575–9584.

Corredoira, E., San-Jose, M. C., Ballester, A., & Vieitez, A. M. (2004). Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. CryoLetters, 25, 33–42.

Cruz-Cruz, C. A., Gonzalez-Arnao, M. T., & Engelmann, F. (2013). Biotechnology and conservation of plant biodiversity. Resources, 2, 73–95. https://doi.org/10.3390/resources2020073

Daws, M. I., Cleland, H., Chmielarz, P., Gorian, F., Leprince, O., Mullins, C. E., Thanos, C. A., Vandvik, V., & Pritchard, H. W. (2006). Variable desiccation tolerance in Acer pseudoplatanus seeds in relation to developmental conditions: A case of phenotypic recalcitrance? Functional Plant Biology, 33, 59–66. https://doi.org/10.1071/FP04206

De Carlo, A., Benelli, C., & Lambardi, M. (2000). Development of a shoot-tip vitrification protocol and comparison with encapsulation-based procedures for plum (Prunus domestica L.) cryopreservation. CryoLetters, 21, 215–222.

Derreudre, J., Scottez, C., Arnaud, Y., & Duron, M. (1990). Resistance of alginate-coated axillary shoot tips of pear tree (Pyrus communis L. cv. Beurre Hardy) in vitro plantlets to dehydration and subsequent freezing in liquid nitrogen. Comptes Rendus de l’Académie des Sciences, 310, 317–323.

Engelmann, F. (2011). Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cellular & Developmental Biology – Plant, 47, 5–16. https://doi.org/10.1007/s11627-010-9327-2

Engstrom, A. (1966). Will deep freeze damage tree seed? Tree Planter’s Notes, 77, 28–29.

Fabre, J., & Dereuddre, J. (1990). Encapsulation-dehydration: A new approach to cryopreservation of Solanum shoot tips. CryoLetters, 11, 413–426.

Forsline, P. L., Towill, L., Waddell, J., Stushnoff, C., Lamboy, W., & McFerson, J. R. (1998). Recovery and longevity of cryopreserved dormant apple buds. Journal of American Society of Horticulture Sciences, 123, 365–370. https://doi.org/10.21273/JASHS.123.3.365

Gantait, S., Kundu, S., Wani, S. H., & Das, P. K. (2016). Cryopreservation of forest tree seeds: A mini-review. Journal of Forest and Environmental Science, 32(3), 311–322. https://doi.org/10.7747/JFES.2016.32.3.311

Jenderek, M. M., & Reed, B. M. (2017). Cryopreserved storage of clonal germplasm in the USDA National Plant Germplasm System. In Vitro Cellular & Developmental Biology – Plant, 53, 299–308. https://doi.org/10.1007/s11627-017-9828-3

Kartha, K. K., & Engelmann, F. (1994). Cryopreservation and germplasm storage. In I. K. Vasil & T. A. Thorpe (Eds.), Plant cell and tissue culture (pp. 195–230). Kluwer. https://doi.org/10.1007/978-94-017-2681-8_9

Keller, E. R. J., Zanke, C. D., Blattner, F. R., Kik, C., Stavělíková, H., Zámečník, J., Esnault, F., Kotlińska, T., Solberg, S., & Miccolis, V. (2012). EURALLIVEG: Establishment of a European core collection by cryopreservation and virus elimination in garlic. Acta Horticulturae, 969, 319–327. https://doi.org/10.17660/ActaHortic.2012.969.41

Keller, E. R. J., Zanke, C. D., Senula, A., Breuing, A., Hardeweg, B., & Winkelmann, T. (2013). Comparing costs for different conservation strategies of garlic (Allium sativum L.) germplasm in genebanks. Genetic Resources and Crop Evolution, 60(3), 913–926. https://doi.org/10.1007/s10722-012-9888-5

Klesse, S., Abegg, M., Hopf, S. E., Gossner, M. M., Rigling, A., & Queloz, V. (2021). Spread and severity of ash dieback in Switzerland – Tree characteristics and landscape features explain varying mortality probability. Frontiers in Forests and Global Change, 4, Article 645920. https://doi.org/10.3389/ffgc.2021.645920

Kotlarski, S., Michalak, M., & Chmielarz, P. (2019). Klonowanie najstarszych dębów pomnikowych rosnących w Polsce z wykorzystaniem metody in vitro [Cloning of the oldest monumental oaks growing in Poland with the use of in vitro method]. Rocznik Polskiego Towarzystwa Dendrologicznego, 67, 53–60.

Kovalchuk, I., Turdiev, T., Mukhitdinova, Z., Frolov, S., & Reed, B. M. (2014). Cryopreservation of native Kazakhstan apricot (Prunus armeniaca L.) seeds and embryonic axes. CryoLetters, 35, 83–89.

Kryszczuk, A., Keller, J., Grübe, M., & Zimnoch-Guzowska, E. (2006). Cryopreservation of potato (Solanum tuberosum L.) shoot tips using vitrification and droplet method. Journal of Food, Agriculture and Environment, 4, 196–200.

Kulus, D. (2020). Cryopreservation of bleeding heart [Lamprocapnos spectabilis (L.) Fukuhara] shoot tips using encapsulation-dehydration. CryoLetters, 41(2), 75–85.

Kulus, D., & Abratowska, A. (2017). CRYOconservation of Ajania pacifica (Nakai) Bremer et Humphries via encapsulation-dehydration technique. CryoLetters, 38(5), 387–398.

Kulus, D., & Miler, N. (2021). Application of plant extracts in micropropagation and cryopreservation of bleeding heart: An ornamental-medicinal plant species. Agriculture, 11(6), Article 542. https://doi.org/10.3390/agriculture11060542

Kulus, D., Serocka, M., & Mikuła, A. (2018). Effect of various preculture and osmotic dehydration conditions on cryopreservation efficiency and morphogenetic response of chrysanthemum shoot tips. Acta Scientiarum Polonorum, Hortorum Cultus, 17(1), 139–147. https://doi.org/10.24326/asphc.2018.1.13

Kulus, D., & Tymoszuk, A. (2021). Gold nanoparticles affect the cryopreservation efficiency of in vitro-derived shoot tips of bleeding heart. Plant Cell, Tissue and Organ Culture, 146, 297–311. https://doi.org/10.1007/s11240-021-02069-4

Lambardi, M., Fabbri, A., & Caccavale, A. (2000). Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro-grown shoot tips. Plant Cell Reports, 19, 213–218. https://doi.org/10.1007/s002990050001

Makowski, D. (2013). Wybrane gatunki Pteropsida w kulturze in vitro i krioprezerwacji [Selected species of Pteropsida in in vitro culture and cryopreservation] [Unpublished doctoral dissertation]. Polish Academy of Sciences Botanical Garden – Center for Biological Diversity Conservation in Powsin.

Makowski, D., Rybczyński, J. J., & Mikuła, A. (2015). A simple way to overcome the recalcitrance of the water fern Ceratopteris thalictroides (L.) Brongn. to cryopreservation. Acta Societatis Botanicorum Poloniae, 84(3), 385–388. https://doi.org/10.5586/asbp.2015.032

Makowski, D., Tomiczak, K., Rybczyński, J. J., & Mikuła, A. (2016). Integration of tissue culture and cryopreservation methods for propagation and conservation of the fern Osmunda regalis L. Acta Physiologiae Plantarum, 38, Article 19. https://doi.org/10.1007/s11738-015-2037-y

Martínez, M. T., Ballester, A., & Vieitez, A. M. (2003). Cryopreservation of embryogenic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiology, 46, 182–189. https://doi.org/10.1016/S0011-2240(03)00024-5

Michalak, M., Barciszewska, M. Z., Barciszewski, J., Plitta, B. P., & Chmielarz, P. (2013). Global changes in DNA methylation in seeds and seedlings of Pyrus communis after seed desiccation and storage. PLoS ONE, 8(8), Article e70693. https://doi.org/10.1371/journal.pone.0070693

Michalak, M., Plitta, B. P., & Chmielarz, P. (2013). Desiccation sensitivity and successful cryopreservation of oil seeds of European hazelnut (Corylus avellana). Annals of Applied Biology, 163, 351–358. https://doi.org/10.1111/aab.12059

Michalak, M., Plitta, B. P., Tylkowski, T., Chmielarz, P., & Suszka, J. (2015). Desiccation tolerance and cryopreservation of seeds of black poplar (Populus nigra L.), a disappearing tree species in Europe. European Journal of Forest Research, 134, 53–60. https://doi.org/10.1007/s10342-014-0832-4

Michalak, M., Plitta-Michalak, B. P., & Chmielarz, P. (2015). Desiccation tolerance and cryopreservation of wild apple (Malus sylvestris) seeds. Seed Science and Technology, 43, 480–491. https://doi.org/10.15258/sst.2015.43.3.20

Mikuła, A., Makowski, D., Tomiczak, K., & Rybczyński, J. J. (2013). Kultury in vitro i krioprezerwacja w zachowaniu różnorodności roślin – standardy dla banku genów [In vitro culture and cryopreservation for biodiversity conservation – Genebank standards]. Polish Journal of Agronomy, 14, 3–17.

Mikuła, A., Makowski, D., Walters, C., & Rybczyński, J. J. (2011). Exploration of cryo-methods to preserve tree and herbaceous fern gametophytes. In H. Fernández, A. Kumar, & M. A. Revilla (Eds.), Working with ferns: Issues and application (pp. 173–192). Springer. https://doi.org/10.1007/978-1-4419-7162-3_13

Mikuła, A., Olas, M., Sliwińska, E., & Rybczyński, J. J. (2008). Cryopreservation by encapsulation of Gentiana spp. cell suspensions maintains re-growth, embryogenic competence and DNA content. CryoLetters, 29, 409–418.

Mikuła, A., Tomiczak, K., Domżalska, L., & Rybczyński, J. J. (2015). Cryopreservation of Gentianaceae: Trends and applications. In J. J. Rybczyński, M. Davey, & A. Mikuła (Eds.), The Gentianaceae – Volume 2: Biotechnology and applications (pp. 267–286). Springer. https://doi.org/10.1007/978-3-642-54102-5_11

Niemczyk, M., & Puchalski, J. (2015). Long-term cryogenic storage of seeds as a method for native Polish flora conservation. In J. J. Rybczyński & J. Puchalski (Eds.), Biological diversity in Poland – The challenges and tasks for botanical gardens and gene banks until 2020 (pp. 27–33). Polish Academy of Sciences Botanical Garden – Center for Biological Diversity Conservation in Powsin.

Niino, T., Sakai, A., Enomoto, S., Magoshi, J., & Kato, S. (1992). Cryopreservation of in vitro grown shoot tips of mulberry by vitrification. CryoLetters, 13, 303–312.

Ntuli, T. M., Finch-Savage, W. E., Berjak, P., & Pammenter, N. W. (2011). Increased drying rate lowers the critical water content for survival in embryonic axes of English oak (Quercus robur L.) seeds. Journal of Integrative Plant Biology, 53, 270–280. https://doi.org/10.1111/j.1744-7909.2010.01016.x

Nuc, K., Marszałek, M., & Pukacki, P. M. (2016). Cryopreservation changes the DNA methylation of embryonic axes of Quercus robur and Fagus sylvatica seeds during in vitro culture. Trees, 30, 1831–1841. https://doi.org/10.1007/s00468-016-1416-3

Ochatt, S., Lambardi, M., Panis, B., Pathriana, R., Revilla, M. A., & Wang, Q. C. (2021). Cryopreservation and in vitro banking: A cool subject – Preface from the editors. Plant Cell, Tissue and Organ Culture, 144, 1–5. https://doi.org/10.1007/s11240-020-01985-1

Olas-Sochacka, M. (2017). Zabezpieczenie zasobów genowychczosnku pospolitego (Allium sativium L.) w kriobanku genów [Preservation of garlic (Allium sativum L.) genetic resources in cryobank]. Zeszyty Naukowe Instytutu Ogrodnictwa, 25, 85–93.

Olas-Sochacka, M., & Kotlińska, T. (2015). International cryobank of the genus Allium. In J. J. Rybczyński & J. T. Puchalski (Eds.), Biological diversity in Poland – The challenges and tasks for botanical gardens and gene banks until 2020 (pp. 35–39). Polish Academy of Sciences Botanical Garden – Center for Biological Diversity Conservation in Powsin.

Paulus, V., Brison, M., Dosba, F., & de Boucaud, M. T. (1993). Preliminary studies on cryopreservation of peach shoot tips by vitrification. Comptes Rendus de l’Academie d’Agriculture de France, 79, 93–102.

Pence, V. C. (2000). Cryopreservation of in vitro grown fern gametophytes. American Fern Journal, 90(1), 16–23. https://doi.org/10.2307/1547258

Pence, V. C. (2011). Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cellular & Developmental Biology – Plant, 47, 176–187. https://doi.org/10.1007/s11627-010-9323-6

Plitta, B. P., Michalak, M., Naskręt-Barciszewska, M. Z., Barciszewski, J., & Chmielarz, P. (2014). DNA methylation of Quercus robur L. plumules following cryo-pretreatment and cryopreservation. Plant Cell, Tissue and Organ Culture, 117, 31–37. https://doi.org/10.1007/s11240-013-0417-9

Plitta-Michalak, B. P., Naskręt-Barciszewska, M. Z., Barciszewski, J., Chmielarz, P., & Michalak, M. (2021). Epigenetic integrity of orthodox seeds stored under conventional and cryogenic conditions. Forests, 12, Article 288. https://doi.org/10.3390/f12030288

Plitta-Michalak, B. P., Naskręt-Barciszewska, M. Z., Kotlarski, S., Tomaszewski, D., Tylkowski, T., Barciszewski, J., Chmielarz, P., & Michalak, M. (2018). Changes in genomic 5-methylcytosine level mirror the response of orthodox (Acer platanoides L.) and recalcitrant (Acer pseudoplatanus L.) seeds to severe desiccation. Tree Physiology, 38, 617–629. https://doi.org/10.1093/treephys/tpx134

Popova, E., Moltchanova, E., Han, S. H., Saxena, P., & Kim, D. H. (2016). Cryopreservation of Prunus padus seeds: Emphasizing the significance of Bayesian methods for data analysis. Canadian Journal of Forest Research, 46, 766–774. https://doi.org/10.1139/cjfr-2016-0020

Pritchard, H. W. (2007). Cryopreservation of desiccated tolerant seeds. In J. G. Day & G. N. Stacey (Eds.), Cryopreservation and freeze-drying protocols (pp. 183–199). Humana Press. https://doi.org/10.1007/978-1-59745-362-2_13

Puchalski, J., Niemczyk, M., Walerowski, P., Podyma, W., & Kapler, A. (2014). Seed banking of Polish endangered plants – FlorNatur Project. Biodiversity Research and Conservation, 34, 17–25. https://doi.org/10.2478/biorc-2014-0005

Reed, B. M. (2008). Cryopreservation – Practical considerations. In B. Reed (Ed.), Plant cryopreservation: A practical guide (pp. 3–13). Springer. https://doi.org/10.1007/978-0-387-72276-4

Rivière, S., & Müller, J. V. (2018). Contribution of seed banks across Europe towards the 2020 Global Strategy for Plant Conservation targets, assessed through the ENSCONET database. Oryx, 52(3), 464–470. https://doi.org/10.1017/S0030605316001496

Roberts, E. H. (1973). Predicting the storage life of seeds. Seed Science and Technology, 1, 499–514.

Rozporządzenie Ministra Środowiska z dnia 9 października 2014 r. w sprawie ochrony gatunkowej roślin (Dz. U. 2014, poz. 1409) [Regulation of the Minister of Environment dated October 9, 2014, on the legally protected plants (Journal of Laws, 2014, item 1409)]. (2014). https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20140001409/O/D20141409.pdf

Rybczyński, J. J., Davey, M. R., Tomiczak, K., Niedziela, A., & Mikuła, A. (2015). Systems of plant regeneration in gentian in vitro cultures. In J. J. Rybczyński, M. Davey, & A. Mikuła (Eds.), The Gentianaceae – Volume 2: Biotechnology and applications (pp. 1–44). Springer. https://doi.org/10.1007/978-3-642-54102-5_1

Rybczyński, J. J., Tomiczak, K., Grzyb, M., & Mikuła, A. (2018). Morphogenic events in ferns: Single and multicellular explants in vitro. In H. Fernández (Ed.), Current advances in fern research (pp. 99–120). Springer. https://doi.org/10.1007/978-3-319-75103-0_5

Sakai, A., & Engelmann, F. (2007). Vitrification, encapsulation-vitrification and droplet-vitrification: A review. CryoLetters, 28, 151–172.

Smyda-Dajmund, P. (2017). Cryopreservation of shoot tips and pollen of potato. Plant Breeding and Seed Science, 76, 75–80. https://doi.org/10.1515/plass-2017-00025

Stroheker, S., Queloz, V., & Nemesio-Gorriz, M. (2021). First report of Hymenoscyphus fraxineus causing ash dieback in Spain. New Disease Reports, 44, Article e12054. https://doi.org/10.1002/ndr2.1205

Stushnoff, C., & Juntilla, O. (1978). Resistance to low temperature injury in hydrated lettuce seed by supercooling. In P. H. Li & A. Sakai (Eds.), Plant cold hardiness and freezing stress: Mechanisms and crop implications (pp. 241–247). Academic Press. https://doi.org/10.1016/B978-0-12-447650-9.50021-6

Tanner, J. D., Chen, K. Y., Bonnart, R. M., Minas, I. S., & Volk, G. M. (2021). Considerations for large-scale implementation of dormant budwood cryopreservation. Plant Cell, Tissue and Organ Culture, 144, 35–48. https://doi.org/10.1007/s11240-020-01884-5

Thammasiri, K. (1999). Cryopreservation of embryonic axes of jackfruit. CryoLetters, 20, 21–28.

Tomiczak, K., Grzyb, M., Rybczyński, J. J., & Mikuła, A. (2018). Somatic embryogenesis and somatic embryo cryopreservation of the tree-fern Cyathea delgadii Sternb. In S. M. Jain & P. Gupta (Eds.), Step wise protocols for somatic embryogenesis of important woody plants (pp. 291–303). Springer. https://doi.org/10.1007/978-3-319-79087-9_23

Towill, L. E., & Ellis, D. D. (2008). Cryopreservation of dormant buds. In B. Reed (Ed.), Plant cryopreservation: A practical guide (pp. 421–442). Springer. https://doi.org/10.1007/978-0-387-72276-4_16

Valladares, S., Toribio, M., Celestino, C., & Vieitez, A. M. (2004). Cryopreservation of embryogenic cultures from mature Quercus suber trees using vitrification. CryoLetters, 25, 177–186.

Walters, C. (2015). Orthodoxy, recalcitrance and in-between: Describing variation in seed storage characteristics using threshold responses to water loss. Planta, 242(2), 397–406. https://doi.org/10.1007/s00425-015-2312-6

Walters, C., Wesley-Smith, J., Crane, J., Hill, L. M., Chmielarz, P., Pammenter, N. W., & Berjak, P. (2008). Cryopreservation of recalcitrant (i.e. desiccation-sensitive) seeds. In B. Reed (Ed.), Plant cryopreservation: A practical guide (pp. 465–484). Springer. https://doi.org/10.1007/978-0-387-72276-4_18

Walters, C., Wheeler, L., & Stanwood, P. C. (2004). Longevity of cryogenically stored seeds. Cryobiology, 48, 229–244. https://doi.org/10.1016/j.cryobiol.2004.01.007

Walters, C., Wheeler, L. M., & Grotenhuis, J. M. (2005). Longevity of seeds stored in a genebank: Species characteristics. Seed Science Research, 15(1), 1–20. https://doi.org/10.1079/SSR2004195

Wang, B. S. P., Charest, P. J., & Downie, B. (1993). Ex situ storage of seeds, pollen and in vitro cultures of perennial woody plant species. Food and Agriculture Organization of the United Nations.

Wang, M.-R., Lambardi, M., Engelmann, F., Pathirana, R., Panis, B., Volk, G. M., & Wang, Q.-C. (2021). Advances in cryopreservation of in vitro-derived propagules: Technologies and explant sources. Plant Cell, Tissue and Organ Culture, 144, 7–20. https://doi.org/10.1007/s11240-020-01770-0

Wawrzyniak, M. K., Jasińska, A. K., Chmielarz, P., & Kozlowski, G. (2020). Desiccation, dormancy, and storage of Pterocarya fraxinifolia (Juglandaceae) seeds: Application in Hyrcanian and Colchian conservation. Canadian Journal of Forest Research, 50(1), 24–31. https://doi.org/10.1139/cjfr-2018-0519

Wawrzyniak, M. K., Kalemba, E. M., Ratajczak, E., & Chmielarz, P. (2020). Oxidation processes related to seed storage and seedling growth of Malus sylvestris, Prunus avium and Prunus padus. PLoS ONE, 15(6), Article e0234510. https://doi.org/10.1371/journal.pone.0234510

Wawrzyniak, M. K., Michalak, M., & Chmielarz, P. (2020). Effect of different conditions of storage on seed viability and seedling growth of six European wild fruit woody plants. Annals of Forest Science, 77(2), Article 58. https://doi.org/10.1007/s13595-020-00963-z

Woliński, K., Niedzielski, M., & Puchalski, J. (2011). Zastosowanie metod kriogenicznych do długotrwałego przechowywania materiału roślinnego [Application of cryogenic methods for long-term storage of plant material]. Ochrona Środowiska i Zasobów Naturalnych, 49, 504–512.

Wu, Y. J., Zhao, Y. H., Engelmann, F., Zhou, M. D., Zhang, D. M., & Chen, S. Y. (2001). Cryopreservation of apple dormant buds and shoot tips. CryoLetters, 22, 375–380.

Wyse, S. V., Dickie, J. B., & Willis, K. J. (2018). Seed banking not an option for many threatened plants. Nature Plants, 4(11), 848–850. https://doi.org/10.1038/s41477-018-0298-3

Zimnoch-Guzowska, E., & Flis, B. (2021). Over 50 years of potato parental line breeding programme at the Plant Breeding and Acclimatization Institute in Poland. Potato Research, 64, 743–760. https://doi.org/10.1007/s11540-021-09503-2




DOI: https://doi.org/10.5586/asbp.9121

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society