Improving the Growth and Bioactive Compound Production of Selected Plant Species Using Controlled Genetic and Epigenetic Manipulation

Jan Szopa, Anna Kulma

Abstract


This review was designed to summarize the present state of research around the genetic and epigenetic modification of selected plant species and the potential for their application in industry. This review summarizes the activity of research groups from the University of Wrocław completed over the last 3 decades which tends to focus on potatoes and flax likely as a result of their centuries-old tradition of cultivation, processing, and use in Poland. The aims of these studies were various and included the creation of pathogen-resistant plants, increased antioxidant production, improved flax fiber quality, and improved oil properties. New plant breeds initially produced using genetic engineering technology provide an excellent basis for improving our understanding of the genes involved in potato and flax productivity and the quality of their products. These results have been published in many papers and have given rise to new methods for plant breeding and product prototypes which have been patented. However, none of the prototypes have been commercialized because of their GMO origins. In addition, later development of a novel, epigenetic method has led to the creation of more diverse products based on the newly obtained variety of flax called Silesia. These developments have facilitated the production of a range of new raw materials from these epigenetically modified plants. These include a modified oil for improved nutrition and regeneration of skin cells, seed- cake extracts that act as anti-infection agents, improved fiber production for use as bandages for chronic wounds, improved fibers for application as bio composite materials for the development of biodegradable packaging materials and scaffolds for tissue engineering, and micronized fiber for drug delivery. These modifications mean that flax has become a more useful and valuable source of a wide range of raw materials applicable in industry, allowing for the application of these materials in zero waste applications.

Keywords


crop plants; bioactive compounds; transgenics; epigenetics

Full Text:

PDF XML (JATS)

References


Aksamit-Stachurska, A., Korobczak-Sosna, A., Kulma, A., & Szopa, J. (2008). Glycosyltransferase efficiently controls phenylpropanoid pathway. BMC Biotechnology, 8, Article 25. https://doi.org/10.1186/1472-6750-8-25

Arnott, S., & Selsing, E. (1974). Structures for the polynucleotide complexes poly(dA) · poly(dT) and poly(dT) · poly(dA) · poly(dT). Journal of Molecular Biology, 88, 509–521. https://doi.org/10.1016/0022-2836(74)90498-7

Boba, A., Kostyn, K., Kozak, B., Wojtasik, W., Preisner, M., Prescha, A., Gola, E. M., Lysh, D., Dudek, B., Szopa, J., & Kulma, A. (2020). Fusarium oxysporum infection activates the plastidial branch of the terpenoid biosynthesis pathway in flax, leading to increased ABA synthesis. Planta, 251, Article 50. https://doi.org/10.1007/s00425-020-03339-9

Boba, A., Kulma, A., Kostyn, K., Starzycki, M., Starzycka, E., & Szopa, J. (2011). The influence of carotenoid biosynthesis modification on the Fusarium culmorum and Fusarium oxysporum resistance in flax. Physiological and Molecular Plant Pathology, 76, 39–47. https://doi.org/10.1016/j.pmpp.2011.06.002

Chakraborty, S., Galla, S., Cheng, X., Yeo, J.-Y., Mell, B., Singh, V., Yeoh, B., Saha, P., Mathew, A. V., Vijay-Kumar, M., & Joe, B. (2018). Salt-responsive metabolite, β-hydroxybutyrate, attenuates hypertension. Cell Reports, 25, 677–689.e4. https://doi.org/10.1016/j.celrep.2018.09.058

Cubas, P., Vincent, C., & Coen, E. (1999). An epigenetic mutation responsible for natural variation in floral symmetry. Nature, 401(6749), 157–161. https://doi.org/10.1038/43657

Czemplik, M., Korzun-Chłopicka, U., Szatkowski, M., Działo, M., Szopa, J., & Kulma, A. (2017). Optimization of phenolic compounds extraction from flax shives and their effect on human fibroblasts. Evidence-Based Complementary and Alternative Medicine, 2017, Article 3526392. https://doi.org//10.1155/2017/3526392

Czemplik, M., Kulma, A., Bazela, K., & Szopa, J. (2012). The biomedical potential of genetically modified flax seeds overexpressing the glucosyltransferase gene. BMC Complementary and Alternative Medicine, 12, Article 251. https://doi.org/10.1186/1472-6882-12-251

Dzialo, M., Szopa, J., Czuj, T., & Zuk, M. (2017). Oligodeoxynucleotides can transiently upand downregulate CHS gene expression in flax by changing DNA methylation in a sequence-specific manner. Frontiers in Plant Science, 8, Article 755. https://doi.org/10.3389/fpls.2017.00755

Dzialo, M., Szopa, J., Hnitecka, A., & Zuk, M. (2019). Transgenerational perpetuation of CHS gene expression and DNA methylation status induced by short oligodeoxynucleotides in flax (Linum usitatissimum). International Journal of Molecular Sciences, 20, Article 3983. https://doi.org/10.3390/ijms20163983

Felsenfeld, G., Davies, D. R., & Rich, A. (1957). Formation of a three-stranded polynucleotide molecule. Journal of American Chemical Society, 79, 2023–2024. https://doi.org/10.1021/ja01565a074

Gilbert, S. D., Rambo, R. P., Van Tyne, D., & Batey, R. T. (2008). Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nature Structural & Molecular Biology, 15, 177–182. https://doi.org/10.1038/nsmb.1371

Hall, L. M., Booker, H., Siloto, R. M. P., Jhala, A. J., & Weselake, R. J. (2016). Flax (Linum usitatissimum L.). In T. A. McKeon, D. G. Hayes, D. F. Hildebrand, & R. J. Weselake (Eds.), Industrial oil crops (pp. 157–194). Academic Press; AOCS Press. https://doi.org/10.1016/B978-1-893997-98-1.00006-3

Korobczak, A., Aksamit, A., Łukaszewicz, M., Lorenc, K., Rorat, T., & Szopa, J. (2005). The potato glucosyltransferase gene promoter is environmentally regulated. Plant Science, 168, 339–348. https://doi.org/10.1016/J.PLANTSCI.2004.07.038

Kostyn, K., Boba, A., Kostyn, A., Kozak, B., Starzycki, M., Kulma, A., & Szopa, J. (2020). Expression of the tyrosine hydroxylase gene from rat leads to oxidative stress in potato plants. Antioxidants, 9, Article 717. https://doi.org/10.3390/antiox9080717

Kulma, A., Skórkowska-Telichowska, K., Kostyn, K., Szatkowski, M., Skała, J., Drulis-Kawa, Z., Preisner, M., Żuk, M., Szperlik, J., Wang, Y. F., & Szopa, J. (2015). New flax producing bioplastic fibers for medical purposes. Industrial Crops and Products, 68, 80–89. https://doi.org/10.1016/j.indcrop.2014.09.013

Kulma, A., & Szopa, J. (2007). Catecholamines are active compounds in plants. Plant Science, 172, 433–440. https://doi.org/10.1016/j.plantsci.2006.10.013

Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A. V., Raguram, A., Doman, J. L., Liu, D. R., & Gao, C. (2020). Prime genome editing in rice and wheat. Nature Biotechnology, 38, 582–585. https://doi.org/10.1038/s41587-020-0455-x

Lorenc-Kukuła, K., Jafra, S., Oszmiański, J., & Szopa, J. (2005). Ectopic expression of anthocyanin 5-O-glucosyltransferase in potato tuber causes increased resistance to bacteria. Journal of Agricultural and Food Chemistry, 53(2), 272–281. https://doi.org/10.1021/jf048449p

Lorenc-Kukuła, K., Wróbel-Kwiatkowska, M., Starzycki, M., & Szopa, J. (2007). Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiological and Molecular Plant Pathology, 70, 38–48. https://doi.org/10.1016/j.pmpp.2007.05.005

Lukaszewicz, M., Matysiak-Kata, I., Skala, J., Fecka, I., Cisowski, W., & Szopa, J. (2004). Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. Journal of Agricultural and Food Chemistry, 52, 1526–1533. https://doi.org/10.1021/jf034482k

Markiewicz, E., Wilczyński, G., Rzepecki, R., Kulma, A., & Szopa, J. (1996). The 14-3-3 binds to the nuclear matrix endonuclease and has a possible function in the control of plant senescence. Cellular and Molecular Biology Letters, 1, 391–415.

Mierziak, J., Wojtasik, W., Kulma, A., Dziadas, M., Kostyn, K., Dymińska, L., Hanuza, J., Żuk, M., & Szopa, J. (2020). 3-Hydroxybutyrate is active compound in flax that upregulates genes involved in DNA methylation. International Journal of Molecular Sciences, 21, Article 2887. https://doi.org/10.3390/ijms21082887

Morgan, A. R., & Wells, R. D. (1968). Specificity of the three-stranded complex formation between double-stranded DNA and single-stranded RNA containing repeating nucleotide sequences. Journal of Molecular Biology, 37, 63–80. https://doi.org/10.1016/0022-2836(68)90073-9

Peng, H., & Zhang, J. (2009). Plant genomic DNA methylation in response to stresses: Potential applications and challenges in plant breeding. Progress in Natural Science, 19, 1037–1045. https://doi.org/10.1016/j.pnsc.2008.10.014

Pennisi, E. (2020). Like CRISPR, mystery gene editor began as a virus fighter. Science, 370, 898–899. https://doi.org/10.1126/science.370.6519.898

Quemener, A. M., Bachelot, L., Forestier, A., Donnou-Fournet, E., Gilot, D., & Galibert, M.-D. (2020). The powerful world of antisense oligonucleotides: From bench to bedside. WIREs RNA, 11, Article e1594. https://doi.org/10.1002/wrna.1594

Richards, E. J. (2006). Inherited epigenetic variation – Revisiting soft inheritance. Nature Reviews Genetics, 7(5), 395–401. https://doi.org/10.1038/nrg1834

Sahu, P. P., Pandey, G., Sharma, N., Puranik, S., Muthamilarasan, M., & Prasad, M. (2013). Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Reports, 32, 1151–1159. https://doi.org/10.1007/s00299-013-1462-x

Simon, A. J., Ellington, A. D., & Finkelstein, I. J. (2019). Retrons and their applications in genome engineering. Nucleic Acids Research, 47, 11007–11019. https://doi.org/10.1093/nar/gkz865

Simopoulos, A. P. (2008). The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine, 233(6), 674–688. https://doi.org/10.3181/0711-MR-311

Skirycz, A., Świędrych, A., & Szopa, J. (2005). Expression of human dopamine receptor in potato (Solanum tuberosum) results in altered tuber carbon metabolism. BMC Plant Biology, 5, Article 1. https://doi.org/10.1186/1471-2229-5-1

Skórkowska-Telichowska, K., Czemplik-Hubacz, M., Kulma, A., & Szopa, J. (2013). The local treatment and available dressings designed for chronic wounds. Journal of the American Academy of Dermatology, 68, E117–E126. https://doi.org/10.1016/j.jaad.2011.06.028

Skórkowska-Telichowska, K., Mierziak-Darecka, J., Wrobel-Kwiatkowska, M., Gebarowski, T., Szopa, J., & Zuk, M. (2021). Wound coverage by the linen dressing accelerates ulcer healing. Advances in Dermatology and Allergology, 38(5), 827–841. https://doi.org/10.5114/ada.2021.110116

Skórkowska-Telichowska, K., Żuk, M., Kulma, A., Bugajska-Prusak, A., Ratajczak, K., Gąsiorowski, K., Kostyn, K., & Szopa, J. (2010). New dressing materials derived from transgenic flax products to treat longstanding venous ulcers – A pilot study. Wound Repair and Regeneration, 18, 168–179. https://doi.org/10.1111/j.1524-475x.2010.00578.x

Springer, N. M. (2013). Epigenetics and crop improvement. Trends in Genetics, 29, 241–247. https://doi.org/10.1016/j.tig.2012.10.009

Styrczewska, M., Kostyn, A., Kulma, A., Majkowska-Skrobek, G., Augustyniak, D., Prescha, A., Czuj, T., & Szopa, J. (2015). Flax fiber hydrophobic extract inhibits human skin cells inflammation and causes remodeling of extracellular matrix and wound closure activation. BioMed Research International, 2015, Article 862391. https://doi.org/10.1155/2015/862391

Styrczewska, M., Kulma, A., Ratajczak, K., Amarowicz, R., & Szopa, J. (2012). Cannabinoid-like anti-inflammatory compounds from flax fiber. Cellular and Molecular Biology Letters, 17, 479–499. https://doi.org/10.2478/s11658-012-0023-6

Sun, C., Höglund, A.-S., Olsson, H., Mangelsen, E., & Jansson, C. (2005). Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: Identification of SUSIBA2 as a transcriptional activator in plant sugar signalling. Plant Journal, 44, 128–138. https://doi.org/10.1111/j.1365-313X.2005.02515.x

Sun, J., Zhao, M., Yang, L., Liu, X., Pacifico, L., Chiesa, C., & Xi, B. (2021). Identification of potential metabolic markers of hypertension in Chinese children. International Journal of Hypertension, 2021, Article 6691734. https://doi.org/10.1155/2021/6691734

Szopa, J., Korobczak, A., Aksamit, A., Łukaszewicz, M., Skała, J., & Rorat, T. (2009). Sposób genetycznej modyfikacji roślin, zwłaszcza ziemniaków [A method of genetic modification of plants, potatoes in particular] (Patent No. 201594). Patent Office of the Republic of Poland.

Szopa, J., Łukaszewicz, M., & Skała, J. (2006). Zmodyfikowany wektor binarny pBinAR [Modified binary vector pBinAR] (Patent No. 194027). Patent Office of the Republic of Poland.

Szopa, J., & Wilczyński, G. (2002). Sposób hamowania syntezy białka 14-3-3 w ziemniakach [Method of inhibiting the synthesis of protein 14-3-3 in potatoes] (Patent No. 184218). Patent Office of the Republic of Poland.

Szopa, J., Wilczyński, G., Fiehn, O., Wenczel, A., & Willmitzer, L. (2001). Identification and quantification of catecholamines in potato plants (Solanum tuberosum) by GC–MS. Phytochemistry, 58, 315–320. https://doi.org/10.1016/S0031-9422(01)00232-1

Szopa, J., & Wróbel-Kwiatkowska, M. (2011). Sposób wytwarzania lnu o przyspieszonym procesie roszenia [Flax production method with an accelerated retting process] (Patent No. 209609). Patent Office of the Republic of Poland.

Szopa-Skórkowski, J., & Wróbel, M. (2008). Sposób wytwarzania lnu o podwyższonym poziomie polihydroksymaślanu [A method of producing flax with an increased level of polyhydroxybutyrate] (Patent No. 198868). Patent Office of the Republic of Poland.

Szopa-Skórkowski, J., Wróbel-Kwiatkowska, M., & Kulma, A. (2015). Biokompozyt i jego zastosowanie [A biocomposite and its application] (Patent No. 219773). Patent Office of the Republic of Poland.

Szopa-Skórkowski, J., Żuk, M., & Skórkowska-Telichowska, K. (2013). Tkanina, zwłaszcza do wytwarzania opatrunków [Fabric, in particular for the manufacture of dressings] (Patent No. 213595). Patent Office of the Republic of Poland.

Świędrych, A., Lorenc-Kukuła, K., Skirycz, A., & Szopa, J. (2004). The catecholamine biosynthesis route in potato is affected by stress. Plant Physiology and Biochemistry, 42(7–8), 593–600. https://doi.org/10.1016/j.plaphy.2004.07.002

Wilczyński, G., Kulma, A., & Szopa, J. (1998). The expression of 14-3-3 isoforms in potato is developmentaly regulated. Journal of Plant Physiology, 153, 118–126. https://doi.org/10.1016/S0176-1617(98)80054-0

Wojtasik, W., Boba, A., Preisner, M., Kostyn, K., Szopa, J., & Kulma, A. (2019). DNA methylation profile of β-1,3-glucanase and chitinase genes in flax shows specificity towards Fusarium oxysporum strains differing in pathogenicity. Microorganisms, 7(12), Article 589. https://doi.org/10.3390/microorganisms7120589

Wojtasik, W., Kulma, A., Boba, A., & Szopa, J. (2014). Oligonucleotide treatment causes flax β-glucanase up-regulation via changes in gene-body methylation. BMC Plant Biology, 14, Article 261. https://doi.org/10.1186/s12870-014-0261-z

Wróbel, M., Zebrowski, J., & Szopa, J. (2004). Polyhydroxybutyrate synthesis in transgenic flax. Journal of Biotechnology, 107, 41–54. https://doi.org/10.1016/j.jbiotec.2003.10.005

Wróbel-Kwiatkowska, M., Lorenc-Kukula, K., Starzycki, M., Oszmiański, J., Kepczyńska, E., & Szopa, J. (2005). Expression of β-1,3-glucanase in flax causes increased resistance to fungi. Physiological and Molecular Plant Pathology, 65, 245–256. https://doi.org/10.1016/j.pmpp.2005.02.008

Wróbel-Kwiatkowska, M., Skórkowska-Telichowska, K., Dymińska, L., Mączka, M., Hanuza, J., & Szopa, J. (2009). Biochemical, mechanical, and spectroscopic analyses of genetically engineered flax fibers producing bioplastic (poly-β-hydroxybutyrate). Biotechnology Progress, 25, 1489–1498. https://doi.org/10.1002/btpr.194

Wróbel-Kwiatkowska, M., Starzycki, M., Zebrowski, J., Oszmiański, J., & Szopa, J. (2007). Lignin deficiency in transgenic flax resulted in plants with improved mechanical properties. Journal of Biotechnology, 128, 919–934. https://doi.org/10.1016/j.jbiotec.2006.12.030

Zuk, M., Szperlik, J., & Szopa, J. (2021). Linseed Silesia, diverse crops for diverse diets. New solutions to increase dietary lipids in crop species. Foods, 10, Article 2675. https://doi.org/10.3390/foods10112675

Żuk, M., & Szopa-Skórkowski, J. (2014). Transgeniczna roślina, zwłaszcza len, sposób jej otrzymywania, ekstrakt z tej rośliny oraz jego zastosowania [A transgenic plant, especially flax, the method of its production, the extract of this plant and its applications] (Patent No. 217808). Patent Office of the Republic of Poland.

Żuk, M., Wojtasik, W., & Szopa-Skórkowski, J. (2021). Sposób zmiany poziomu ekspresji genu obecnego w genomie komórki roślinnej, epigenetycznie zmodyfikowana roślina otrzymana z komórki wytworzonej tym sposobem, sposób wytwarzania epigenetycznie modulowanego lnu o zwiększonej ekspresji endogennych genów kodujących β-glukanazę oraz oligonukleotyd jednoniciowego DNA do otrzymywania epigenetycznie modulowanego lnu [A method of changing the expression level of a gene present in the genome of plant cell, epigenetically modified plant obtained from a cell produced in this way, a method of producing epigenetically modulated flax with increased endogenous expression genes encoding β-glucanase and single-stranded oligonucleotide DNA for the production of epigenetically modulated flax] (Patent No. 236567). Patent Office of the Republic of Poland.




DOI: https://doi.org/10.5586/asbp.9120

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society