Geobotany Revisited – A Glimpse at the Blooming and Influential Discipline With Its Strong Roots in the Beauty of Nature and the Pragmatic Need of Its Protection

Arkadiusz Nowak, Sylwia Nowak

Abstract


The dreams of Humboldt and many of his successors have not yet come true. Despite the great achievements of the last century, we still do not know the total number of vegetation types or the difference in the patterns of the distribution of diversity above and below the ground, we cannot predict all the effects of climate change on vegetation at the regional and global scale, we do not know the hidden and dark parts of species diversity in most ecosystems, nor are we able to make historical vegetation maps for many areas of the Earth. We also do not know the cultural contribution of many plant communities for the development of human populations and civilization, nor do we know the future recreational and therapeutical potential of vegetation (e.g., aromatherapy, ecotherapy). Geobotanical methods can effectively contribute to finding the answers to hot questions in current ecology.

Since there are so many gaps in our geobotanical knowledge and so many young researchers still speechless with delight when looking at endless steppes, lush rainforests, tall-herbs, or colorful meadows, there is no doubt that geobotany will be a thriving and developing discipline in the future. Its driving force is the passion of researchers and admiration for the beauty of various types of vegetation and their dynamics as well as awareness of the need to protect them for generations to come.


Keywords


geobotany; Humboldt; Paczoski; vegetation science; phytogeography

Full Text:

PDF XML (JATS)

References


Aavik, T., Carmona, C. P., Träger, S., Kaldra, M., Reinula, I., Conti, E., Keller, B., Helm, A., Hiiesalu, I., Hool, K., Kaisel, M., Oja, T., Lotman, S., & Pärtel, M. (2020). Landscape context and plant population size affect morph frequencies in heterostylous Primula veris – Results of a nationwide citizen-science campaign. Journal of Ecology, 108(6), 2169–2183. https://doi.org/10.1111/1365-2745.13488

Adam, E., Mutanga, O., & Rugege, D. (2010). Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetlands Ecology and Management, 18(3), 281–296. https://doi.org/10.1007/s11273-009-9169-z

Ali, A. M., Darvishzadeh, R., Shahi, K. R., & Skidmore, A. (2019). Validating the predictive power of statistical models in retrieving leaf dry matter content of a coastal wetland from a Sentinel-2 Image. Remote Sensing, 11(16), Article 1936. https://doi.org/10.3390/rs11161936

Andres-Mauricio, J., Valdez-Lazalde, J. R., George-Chacón, S. P., & Hernández-Stefanoni, J. L. (2021). Mapping structural attributes of tropical dry forests by combining Synthetic Aperture Radar and high-resolution satellite imagery data. Applied Vegetation Science, 24(2), Article e12580. https://doi.org/10.1111/avsc.12580

Beamish, A., Raynolds, M. K., Epstein, H., Frost, G. V., Macander, M. J., Bergstedt, H., Bartsch, A., Kruse, S., Miles, V., Tanis, C. M., Heim, B., Fuchsa, M., Chabrillat, S., Shevtsova, J., Verdonen, M., & Wagner, J. (2020). Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sensing of Environment, 246(1), Article 111872. https://doi.org/10.1016/j.rse.2020.111872

Berg, C., Abdank, A., Isermann, M., Jansen, F., Timmermann, T., & Dengler, J. (2014). Red lists and conservation prioritization of plant communities – A methodological framework. Applied Vegetation Science, 17(3), 504–515. https://doi.org/10.1111/avsc.12093

Birks, H. J. B., Felde, V. A., Bjune, A. E., Grytnes, J.-A., Seppä, H., & Giesecke, T. (2016). Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Review of Palaeobotany and Palynology, 228, 1–25. https://doi.org/10.1016/j.revpalbo.2015.12.011

Biurrun, I., Burrascano, S., Dembicz, I., Guarino, R., Kapfer, J., Pielech, R., Garcia-Mijangos, I., Wagner, V., Palpurina, S., Mimet, A., Pellissier, V., Marcenò, C., Nowak, A., Bergamini, A., Boch, S., Csergő, A. M., Grytnes, J.-A., Campos, J. A., Erschbamer, B., … Dengler, J. (2019). GrassPlot v. 2.00 – First update on the database of multi-scale plant diversity in Palaearctic grasslands. Palaearctic Grasslands, 44, 26–47. https://doi.org/10.21570/EDGG.PG.44.26-47

Borkowska, L. (2013). Raport z badań [Research report]. Wiadomości Botaniczne, 57(1–2), 111–112.

Bramer, I., Anderson, B. J., Bennie, J., Bladon, A. J., De Frenne, P., Hemming, D., Hill, R. A., Kearney, M. R., Körner, C., Korstjens, A. H., Lenoir, J., Maclean, I. M. D., Marsh, C. D., Morecroft, M. D., Ohlemüller, R., Slater, H. D., Suggitt, A. J., Zellweger, F., & Gillingham, P. K. (2018). Advances in monitoring and modelling climate at ecologically relevant scales. In D. A. Bohan, A. J. Dumbrell, G. Woodward, & M. Jackson (Eds.), Next generation biomonitoring: Part 1 (pp. 101–161). Academic Press. https://doi.org/10.1016/bs.aecr.2017.12.005

Braun-Blanquet, J. (1928). Pflanzensoziologie. Grundzüge der Vegetationskunde [Plant sociology. Basics of vegetation science]. Springer. https://doi.org/10.1007/978-3-662-02056-2

Brewer, S., Giesecke, T., Davis, B. A. S., Finsinger, W., Wolters, S., Binney, H., de Beaulieu, J.-L., Fyfe, R., Gil-Romera, G., Kühl, N., Kuneš, P., Leydet, M., & Bradshaw, R. H. (2017). Late-glacial and Holocene European pollen data. Journal of Maps, 13(2), 921–928. https://doi.org/10.1080/17445647.2016.1197613

Bruelheide, H., Dengler, J., Jiménez-Alfaro, B., Purschke, O., Hennekens, S. M., Chytrý, M., Pillar, V. D., Jansen, F., Kattge, J., Sandel, B., Aubin, I., Biurrun, I., Field, R., Haider, S., Jandt, U., Lenoir, J., Peet, R. K., Peyre, G., Sabatini, F. M., … Andrei, Z. (2019). sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 30(2), 161–186. https://doi.org/10.1111/jvs.12710

Bruelheide, H., Tichý, L., Chytrý, M., & Jansen, F. (2021). Implementing the formal language of the vegetation classification expert systems (ESy) in the statistical computing environment R. Applied Vegetation Science, 24(1), Article e12562. https://doi.org/10.1111/avsc.12562

Bunting, M. J., Farrell, M., Broström, A., Hjelle, K. L., Mazier, F., Middleton, R., Nielsen, A. B., Rushton, E., Shaw, H., & Twiddle, C. L. (2013). Palynological perspectives on vegetation survey: A critical step for model-based reconstruction of Quaternary land cover. Quaternary Science Reviews, 82, 41–55. https://doi.org/10.1016/j.quascirev.2013.10.006

Butler, E. E., Datta, A., Flores-Moreno, H., Chen, M., Wythers, K. R., Fazayeli, F., Banerjee, A., Atkin, O. A., Kattge, J., Amiaud, B., Blonder, B., Boenisch, G., Bond-Lamberty, B., Brown, K. A., Byun, C., Campetella, G., Cerabolini, B. E. L., Cornelissen, J. H. C., Craine, J. M., … Reich, P. B. (2017). Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 114(51), E10937–E10946. https://doi.org/10.1073/pnas.1708984114

Capra, C. L., Haller, R. L., & Kennedy, K. L. (2019). Introduction to the profession of horticultural therapy. In R. L. Haller, K. L. Kennedy, & C. L. Capra (Eds.), The profession and practice of horticultural therapy (pp. 3–22). CRC Press. https://doi.org/10.1201/9781315143101

Chen, Y., Shen, T.-J., & Condit, R. (2021). Disentangling multi-species aggregate versus overlapping distributions. Journal of Vegetation Science, 32(1), Article e12973. https://doi.org/10.1111/jvs.12973

Chiang, Y.-C., Li, D., & Jane, H.-A. (2017). Wild or tended nature? The effects of landscape location and vegetation density on physiological and psychological responses. Landscape and Urban Planning, 167, 72–83. https://doi.org/10.1016/j.landurbplan.2017.06.001

Chytrý, M. (Ed.). (2013). Vegetace České republiky 4. Lesní a křovinná vegetace [Vegetation of the Czech Republic 4. Forest and scrub vegetation]. Academia.

Chytrý, M., Chiarucci, A., Pillar, V. D., & Pärtel, M. (2015). Plant communities: Their conservation assessment and surveys across continents and in the tropics. Applied Vegetation Science, 18(1), 1–2. https://doi.org/10.1111/avsc.12146

Clements, F. E. (1916). Plant succession. An analysis of the development of vegetation. Carnegie Institution of Washington. https://doi.org/10.5962/bhl.title.56234

Clements, F. E. (1936). Nature and structure of the climax. The Journal of Ecology, 24(1), 252–284. https://doi.org/10.2307/2256278

Council of the European Communities. (1992). Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. EUR-Lex. Retrieved November 30, 2021, from https://data.europa.eu/eli/dir/1992/43/oj

Czarnecka, B. (2020). Long-term changes in spatial patterns and life-stage structure in a population of Senecio umbrosus Waldst. et Kit. along with the transformation of grassland vegetation. Acta Societatis Botanicorum Poloniae, 89(4), Article 8942. https://doi.org/10.5586/asbp.8942

De Barba, M., Miquel, C., Boyer, F., Mercier, C., Rioux, D., Coissac, E., & Taberlet, P. (2014). DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Molecular Ecology Resources, 14(2), 306–323. https://doi.org/10.1111/1755-0998.12188

De Cáceres, M., Chytrý, M., Agrillo, E., Attorre, F., Botta-Dukát, Z., Capelo, J., Czúcz, B., Dengler, J., Ewald, J., Faber-Langendoen, D., Feoli, E., Franklin, S. B., Gavilan, R., Gillet, F., Jansen, F., Jiménez-Alfaro, B., Krestov, P., Landucci, F., Lengyel, A., … Wiser, S. K. (2015). A comparative framework for broad-scale plot-based vegetation classification. Applied Vegetation Science, 18(4), 543–560. https://doi.org/10.1111/avsc.12179

De Cáceres, M., Font, X., & Oliva, F. (2010). The management of vegetation classifications with fuzzy clustering. Journal of Vegetation Science, 21(6), 1138–1151. https://doi.org/10.1111/j.1654-1103.2010.01211.x

De Cáceres, M., Font, X., García, R., & Oliva, F. (2003). VEGANA, un paquete de programas para la gestión y análisis de datos ecológicos [VEGANA, a package of programs for the management and analysis of ecological data]. In VII Congreso Nacional de la Asociación Española de Ecología Terrestre, Julio, 2003, Barcelona [VII National Congress of the Ecological Asociation of Terrestrial Ecology, July, 2003, Barcelona] (pp. 1484–1497). Universitat Autónoma de Barcelona.

De Cáceres, M., Legendre, P., & Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119(10), 1674–1684. https://doi.org/10.1111/j.1600-0706.2010.18334.x

Dengler, J., & Boch, S. (2008). Sampling-design effects on properties of species–area relationships – A case study from Estonian dry grassland communities. Folia Geobotanica, 43(3), 289–304. https://doi.org/10.1007/s12224-008-9018-5

Dengler, J., Wagner, V., Dembicz, I., Garcia-Mijangos, I., Naqinezhad, A., Boch, S., Chiarucci, A., Conradi, T., Filibeck, G., Guarino, R., Janisova, M., Steinbauer, M. J., Acic, S., Acosta, A. T. R., Akasaka, M., Allers, M.-A., Apostolova, I., Axmanová, I., Bakan, B., … Campos, J. A. (2018). GrassPlot – A database of multi-scale plant diversity in Palaearctic grasslands. Phytocoenologia, 48(3), 331–347. https://doi.org/10.1127/phyto/2018/0267

Dexter, K., Pennington, T., & Cunningham, C. W. (2010). Using DNA to assess errors in tropical tree identifications: How often are ecologists wrong and when does it matter? Ecological Monographs, 80(2), 267–286. https://doi.org/10.1890/09-0267.1

Directorate-General for Environment, European Commission. (2021). Interpretation Manual of European Union Habitats, version EUR 28. European Environment Agency. Retrieved November 30, 2021, from https://ec.europa.eu/environment/nature/ legislation/habitatsdirective/docs/Int_Manual_EU28.pdf

Dzwonko, Z. (2007). Przewodnik do badań fitosocjologicznych [Guide to phytosociological surveys]. Sorus; Instytut Botaniki Uniwersytetu Jagiellońskiego.

Dzwonko, Z., & Loster, S. (2011). Impact of weather on dynamics of plant functional groups in an abandoned limestone grassland. Acta Societatis Botanicorum Poloniae, 80(4), 259–268. https://doi.org/10.5586/asbp.2011.038

Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

Faliński, J. B. (1990). Kartografia geobotaniczna [Geobotanical cartography] (Vols. 1–3). Państwowe Przedsiębiorstwo Wydawnictw Kartograficznych.

Feilhauer, H., Doktor, D., Schmidtlein, S., & Skidmore, A. K. (2016). Mapping pollination types with remote sensing. Journal of Vegetation Science, 27(5), 999–1011. https://doi.org/10.1111/jvs.12421

Flavel, R. J., Guppy, C. N., Rabbi, S. M. R., & Young, I. M. (2017). An image processing and analysis tool for identifying and analysing complex plant root systems in 3D soil using non-destructive analysis: Root1. PLoS ONE, 12(5), Article e01764. https://doi.org/10.1371/journal.pone.0176433

Fleri, J. R., Wessel, S. A., Atkins, D. H., Case, N. W., Albeke, S. E., & Laughlin, D. C. (2021). Global vegetation project: An interactive online map of open-access vegetation photos. Vegetation Classification and Survey, 2, 41–45. https://doi.org/10.3897/VCS/2021/60575

Frey, W., & Lösch, R. (2010). Geobotanik. Pflanze und Vegetation in Raum und Zeit [Geobotany. Flora and vegetation in space and time] (3rd ed.). Spektrum Akademischer Verlag.

Gaston, K. J., & O’Neill, M. A. (2004). Automated species identification: Why not? Philosophical Transactions of the Royal Society B, Biological Sciences, 359(1444), 655–667. https://doi.org/10.1098/rstb.2003.1442

Geml, J., Gravendeel, B., van der Gaag, K. J., Neilen, M., Lammers, Y., Raes, N., Semenova, T. A., de Knijff, P., & Noordeloos, M (2014). The contribution of DNA metabarcoding to fungal conservation: Diversity assessment, habitat partitioning and mapping red-listed fungi in protected coastal Salix repens communities in the Netherlands. PLoS ONE, 9(6), Article e99852. https://doi.org/10.1371/journal.pone.0099852

Giallonardo, T., Angiolini, C., Ciaschetti, G., Landi, M., Pirone, G., & Frattaroli, A. R. (2019). Environment or management? Relative importance for floristic composition of sub-Mediterranean hay meadows in Central Italy. Applied Vegetation Science, 22(2), 336–347. https://doi.org/10.1111/avsc.12433

Giesecke, T., Davis, B., Brewer, S., Finsinger, W., Wolters, S., Blaauw, M., de Beaulieu, J.-L., Binney, H., Fyfe, R. M., Gaillard, M.-J., Gil-Romera, G., van der Knaap, W. O., Kuneš, P., Kühl, N., van Leeuwen, J. F. N., Leydet, M., Lotter, A. F., Ortu, E., Semmler, M., & Bradshaw, R. H. W. (2014). Towards mapping the late Quaternary vegetation change of Europe. Vegetation History and Archaeobotany, 23(1), 75–86. https://doi.org/10.1007/s00334-012-0390-y

Gobster, P. H., Nassauer, J. I., Daniel, T. C., & Fry, G. (2007). The shared landscape: What does aesthetics have to do with ecology? Landscape Ecology, 22, 959–972. https://doi.org/10.1007/s10980-007-9110-x

Górska-Kłęk, L., Adamczyk, K., & Sobiech, K. (2009). Hortiterapia – metodą uzupełniającą w fizjoterapii [Hortitherapy – Complementary method in physiotherapy]. Fizjoterapia, 17(4), 71–77. https://doi.org/10.2478/v10109-010-0031-x

Gregory, P. J., Hutchison, D. J., Read, D. B., Jenneson, P. M., Gilboy, W. B., & Morton, E. J. (2003). Non-invasive imaging of roots with high resolution X-ray micro-tomography. Plant and Soil, 255(1), 351–359. https://doi.org/10.1023/A:1026179919689

Grisebach, A. (1866). Der gegenwärtige Standpunkt der Geographie der Pflanzen [The current point of view on the geography of plants]. Behm’s Geographische Jahresberichte, 1, 373–402.

Grisebach, A. (1872). Die Vegetation der Erde nach ihrer klimatischen Anordnung. Ein Abriss der vergleichenden Geographie der Pflanzen [The Earth’s vegetation according to its climatic arrangement. An outline of the comparative geography of plants] (Vol. 2). Verlag von Wilhelm Engelmann.

Guo, X., Coops, N. C., Tompalski, P., Nielsen, S. E., Bater, C. B., & Stadt, J. J. (2017). Regional mapping of vegetation structure for biodiversity monitoring using airborne lidar data. Ecological Informatics, 38, 50–61. https://doi.org/10.1016/j.ecoinf.2017.01.005

Haldar, S. K. (2013). Exploration geochemistry. In Mineral exploration. Principles and applications (pp. 55–71). Elsevier. https://doi.org/10.1016/B978-0-12-416005-7.00004-0

Hennekens, S., & Schaminée, H. J. (2001). TURBOVEG, a comprehensive data base management system for vegetation data. Journal of Vegetation Science, 12(4), 589–591. https://doi.org/10.2307/3237010

Herben, T., Suda, J., & Klimešová, J. (2017). Polyploid species rely on vegetative reproduction more than diploids: A re-examination of the old hypothesis. Annals of Botany, 120(2), 341–349. https://doi.org/10.1093/aob/mcx009

Hernández, B., & Hidalgo, M. C. (2005). Effect of urban vegetation on psychological restorativeness. Psychological Reports, 96(3), 1025–1028. https://doi.org/10.2466/pr0.96.3c.1025-1028

Hiiesalu, I., Öpik, M., Metsis, M., Lilje, L., Davidson, J., Vasar, M., Moora, M., Zobel, M., Wilson, S. D., & Pärtel, M. (2012). Plant species richness belowground: Higher richness and new patterns revealed by next-generation sequencing. Molecular Ecology, 21(8), 2004–2016. https://doi.org/10.1111/j.1365-294X.2011.05390.x

Huang, H., Li, Z., Gong, P., Cheng, X., Clinton, N., Cao, C., Ni, W., & Wang, L. (2011). Automated methods for measuring DBH and tree heights with a commercial scanning lidar. Photogrammetric Engineering and Remote Sensing, 77(3), 219–227. https://doi.org/10.14358/PERS.77.3.219

Hult, R. (1881). Försök till analytisk behandling av växtformationerna [Attempts at analytical treatment of the plant formations]. Societas pro Fauna et Flora Fennica Meddelanden, 8, 1–155.

Hunter, J., Franklin, S., Luxton, S., & Loidi, J. (2021). Terrestrial biomes: A conceptual review. Vegetation Classification and Survey, 2, 73–85. https://doi.org/10.3897/VCS/2021/61463

Huntley, B., & Birks, H. J. B. (1983). An atlas of past and present pollen maps for Europe: 0–3,000 years ago. University Press.

Jackowiak, B. (1993). Atlas rozmieszczenia roślin naczyniowych w Poznaniu [Atlas of distribution of vascular plants in Poznań]. Wydawnictwo Sorus.

Jackowiak, B. (1998). Struktura przestrzenna flory dużego miasta. Studium metodyczno-problemowe [Spatial structure of the big city flora. Methodological-problematic studium]. Bogucki Wydawnictwo Naukowe.

Janzen, D. H. (2010). Hope for tropical biodiversity through true bioliteracy. Biotropica, 42(5), 540–542. https://doi.org/10.1111/j.1744-7429.2010.00667.x

Jaźwa, M., Jędrzejczak, E., Klichowska, E., & Pliszko, A. (2018). Predicting the potential distribution area of Solidago ×niederederi (Asteraceae). Turkish Journal of Botany, 42(1), 51–56. https://doi.org/10.3906/bot-1703-17

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, Article 170122. https://doi.org/10.1038/sdata.2017.122

Kattenborn, T., & Schmidtlein, S. (2019). Radiative transfer modelling reveals why canopy reflectance follows function. Scientific Reports, 9(1), Article 6541. https://doi.org/10.1038/s41598-019-43011-1

Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Tautenhahn, S., Werner, G. D. A., Aakala, T., Abedi, M., Acosta, A. T. R., Adamidis, G. C., Adamson, K., Aiba, M., Albert, C. H., Alcántara, J. M., Alcázar, C. C., Aleixo, I., Ali, H., … Wirth, C. (2020). TRY plant trait database – Enhanced coverage and open access. Global Change Biology, 26(1), 119–188. https://doi.org/10.1111/gcb.14904

Kącki, Z., & Śliwiński, M. (2012). The Polish Vegetation Database: Structure, resources and development. Acta Societatis Botanicorum Poloniae, 81(2), 75–79. https://doi.org/10.5586/asbp.2012.014

Kindt, R., Lillesø, J.-P. B., van Breugel, P., Bingham, M., Demissew, S., Dudley, C., Friis, I., Gachathi, F., Kalema, J., Mbago, F., Moshi, H. N., Mulumba, J. W., Namaganda, M., Ndangalasi, H. J., Ruffo, C. K., Minani, V., Jamnadass, R. H., & Graudal, L. (2014). Correspondence in forest species composition between the Vegetation Map of Africa and higher resolution maps for seven African countries. Applied Vegetation Science, 17(1), 162–171. https://doi.org/10.1111/avsc.12055

Konowalik, K., Proćków, M., & Proćków, J. (2017). Climatic niche of Selinum alatum (Apiaceae, Selineae), a new invasive plant species in Central Europe and its alterations according to the climate change scenarios: Are the European mountains threatened by invasion? PLoS One, 12(8), Article e0182793. https://doi.org/10.1371/journal.pone.0182793

Korhonen, L., Korpela, I., Heiskanen, J., & Maltamo, M. (2011). Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sensing of Environment, 115(4), 1065–1080. https://doi.org/10.1016/j.rse.2010.12.011

Kornaś, J., & Medwecka-Kornaś, A. (2002). Geografia roślin [Plant geography]. Wydawnictwo Naukowe PWN.

Kosiba, P., Mróz, L., & Kamiński, R. (2011). Assessment of habitat conditions using Self-Organizing Feature Maps for reintroduction/introduction of Aldrovanda vesiculosa L. in Poland. Acta Societatis Botanicorum Poloniae, 80(2), 139–148. https://doi.org/10.5586/asbp.2011.024

Kotowski, M., Pietras, M., & Łuczaj, Ł. (2019). Extreme levels of mycophilia documented in Mazovia, a region of Poland. Journal of Ethnobiology and Ethnomedicine, 15, Article 12. https://doi.org/10.1186/s13002-019-0291-6

Koyama, A., Uchida, K., Ozeki, M., Iwasaki, T., Nakahama, N., & Suka, T. (2021). Conservation of endangered and rare plants requires strategies additional to deer-proof fencing for conservation of sub-alpine plant diversity. Applied Vegetation Science, 24(1), Article e12553. https://doi.org/10.1111/avsc.12553

Kozłowski, S., & Swędrzyński, A. (2009). Profesor Józef Paczoski – twórca fitosocjologii [Professor Józef Paczoski – Creator of phytosociology]. Łąkarstwo w Polsce, 12, 83–95.

Latałowa, M., & van der Knaap, W. O. (2006). Late Quaternary expansion of Norway spruce Picea abies (L.) Karst. in Europe according to pollen data. Quaternary Science Reviews, 25(21–22), 2780–2805. https://doi.org/10.1016/j.quascirev.2006.06.007

Latowski, K. (2014). Homagium biologowi i filozofowi przyrody – Józefowi Paczoskiemu (26 XI 1864 – 12 II 1942) [In homage to the biologist and philosopher of nature – Józef Paczoski]. Wiadomości Botaniczne, 58(3–4), 162–167.

Laumonier, Y., & Nasi, R. (2018). The last natural seasonal forests of Indonesia: Implications for forest management and conservation. Applied Vegetation Science, 21(3), 461–476. https://doi.org/10.1111/avsc.12377

Lengyel, A., Landucci, F., Mucina, L., Tsakalos, J. L., & Botta-Dukát, Z. (2018). Joint optimization of cluster number and abundance transformation for obtaining effective vegetation classifications. Journal of Vegetation Science, 29(2), 336–347. https://doi.org/10.1111/jvs.12604

Lengyel, A., Roberts, D. W., & Botta-Dukát, Z. (2021). Comparison of silhouette-based reallocation methods for vegetation classification. Journal of Vegetation Science, 32(1), Article e12984. https://doi.org/10.1111/jvs.12984

Lewis, R. J., de Bello, F., Bennett, J. A., Fibich, P., Finerty, G. E., Götzenberger, L., Hiiesalu, I., Kasari, L., Lepš, J., Májeková, M., Mudrák, O., Riibak, K., Ronk, A., Rychtecká, T., Vitová, A., & Pärtel, M. (2017). Applying the dark diversity concept to nature conservation. Conservation Biology, 31(1), 40–47. https://doi.org/10.1111/cobi.12723

Li, X., Yang, Y., Hentry, R. J., Rossetto, M., Wang, Y., & Chen, S. (2015). Plant DNA barcoding: From gene to genome. Biological Reviews of the Cambridge Philosophical Society, 90(1), 157–166. https://doi.org/10.1111/brv.12104

Liang, W., Abidi, M., Carrasco, L., McNelis, J., Tran, L., Li, Y., & Grant, J. (2020). Mapping vegetation at species level with high-resolution multispectral and lidar data over a large spatial area: A case study with Kudzu. Remote Sensing, 12(4), Article 609. https://doi.org/10.3390/rs12040609

Looking for Cowslips. (2021). https://nurmenukk.ee/

Luo, W., Zhang, C., Zhao, X., & Liang, J. (2021). Understanding patterns and potential drivers of forest diversity in northeastern China using machine-learning algorithms. Journal of Vegetation Science, 32(2), Article e13022. https://doi.org/10.1111/jvs.13022

Martorelli, I., Helwerda, L. S., Kerkvliet, J., Gomes, S. I. F., Nuytinck, J., van der Werff, C. R. A., Ramackers, G. J., Gultyaev, A. P., Merckx, V. S. F. T., & Verbeek, F. J. (2020). Fungal metabarcoding data integration framework for the MycoDiversity DataBase (MDDB). Journal of Integrative Bioinformatics, 17(1), Article 20190046. https://doi.org/10.1515/jib-2019-0046

Matesanz, S., Pescador, D. S., Pías, B., Sánchez, A. M., Chacón-Labella, J., Illuminati, A., de la Cruz, M., López-Angulo, J., Marí-Mena, N., Vizcaíno, A., & Escudero, A. (2019). Estimating belowground plant abundance with DNA metabarcoding. Molecular Ecology Resources, 19(5), 1265–1277. https://doi.org/10.1111/1755-0998.13049

Matthias, I., Semmler, M. S. S., & Giesecke, T. (2015). Pollen diversity captures landscape structure and diversity. Journal of Ecology, 103(4), 880–890. https://doi.org/10.1111/1365-2745.12404

Matuszkiewicz, J. M. (2008). Geobotanical regionalization of Poland. Instytut Geografii i Przestrzennego Zagospodarowania PAN.

Matuszkiewicz, W. (2021). Przewodnik do oznaczania zbiorowisk roślinnych Polski [A guide to the identification of the plant communities of Poland]. Wydawnictwo Naukowe PWN.

Maycock, P. F. (1967). Jozef Paczoski: Founder of the science of phytosociology. Ecology, 48(6), 1031–1034. https://doi.org/10.2307/1934560

Meyen, F. (1836). Grundriss der Pflanzengeographie mit ausführlichen Untersuchungen über das Vaterland, den Anbau und den Nutzen der vorzüglichsten Culturpflanzen, welche den Wohlstand der völker Begründen [Sketch of the plant geography with detailed studies of the fatherland, the cultivation, and the use of the most excellent cultivated plants, which ensure the prosperity of the people]. Haude und Spenersche buchhandlung (S. J. Joseephy). https://doi.org/10.5962/bhl.title.59238

Mirek, Z., Piękoś-Mirkowa, H., Zając, A., & Zając, M. (2020). Vascular plants of Poland: An annotated checklist. W. Szafer Institute of Botany, Polish Academy of Sciences.

Mirkin, B. M. (1989). Plant taxonomy and syntaxonomy: A comparative analysis. Vegetatio, 82(1), 35–40. https://doi.org/10.1007/BF00217980

Moeslund, J. E., Brunbjerg, A. K., Clausen, K. K., Dalby, L., Fløjgaard, C., Juel, A., & Lenoir, J. (2017). Using dark diversity and plant characteristics to guide conservation and restoration. Journal of Applied Ecology, 54(6), 1730–1741. https://doi.org/10.1111/1365-2664.12867

Moraczewski, I. R. (1993a). Fuzzy logic for phytosociology. 1. Syntaxa as vague concepts. Vegetatio, 106(1), 1–11. https://doi.org/10.1007/BF00044854

Moraczewski, I. R. (1993b). Fuzzy logic for phytosociology. 2. Generalizations and prediction. Vegetatio, 106(1), 13–20. https://doi.org/10.1007/BF00044855

Morris, E. K., Caruso, T., Buscot, F., Fischer, M., Hancock, C., Maier, T. S., Meiners, T., Müller, C., Obermaier, E., Prati, D., Socher, S. A., Sonnemann, I., Wäschke, N., Wubet, T., Wurst, S., & Rillig, M. C. (2014). Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecology and Evolution, 4(18), 3514–3524. https://doi.org/10.1002/ece3.1155

Mucina, L. (1997). Classification of vegetation: Past, present and future. Journal of Vegetation Science, 8(6), 751–760. https://doi.org/10.2307/3237019

Mucina, L. (2010). Floristic-phytosociological approach, potential natural vegetation, and survival of prejudice. Lazaroa, 31, 173–182. https://doi.org/10.5209/rev_LAZA.2010.v31.13

Mucina, L., Bültmann, H., Dierßen, K., Theurillat, J.-P., Raus, T., Čarni, A., Šumberová, K., Willner, W., Dengler, J., García, R. G., Chytrý, M., Hájek, M., Di Pietro, R., Iakushenko, D., Pallas, J., Daniëls, F. J. A., Bergmeier, E., Santos Guerra, A., Ermakov, N., … Tichý, L. (2016). Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 19(S1), 3–264. https://doi.org/10.1111/avsc.12257

Mueller-Dombois, D., & Ellenberg, H. (1974). Aim and methods of vegetation ecology. John Wiley and Sons.

Naesset, E. (1997). Estimating timber volume of forest stands using airborne laser scanner data. Remote Sensing of Environment, 61(2), 246–253. https://doi.org/10.1016/S0034-4257(97)00041-2

Nicod, C., & Gillet, F. (2021). Recent changes in mountain hay meadows of high conservation value in eastern France. Applied Vegetation Science, 24(2), Article e12573. https://doi.org/10.1111/avsc.12573

Nicolson, M. (1987). Alexander von Humboldt, Humboldtian science, and the origins of the study of vegetation. History of Science, 25(2), 167–194. https://doi.org/10.1177/007327538702500203

Nicolson, M. (1996). Alexander von Humboldt and the geography of vegetation. In N. Jardine & A. Cunningham (Eds.), Romanticism and the sciences (pp. 169–185). Cambridge U. P.

Nieder, A. (2020). The adaptive value of numerical competence. Trends in Ecology & Evolution, 35(7), 605–617. https://doi.org/10.1016/j.tree.2020.02.009

Nowak, A., Świerszcz, S., Naqinezhad, A., Aleksanya, A., Fayvush, G., Kotowski, M., Klichowska, E., & Nobis, M. (in press). Is the vegetation archetype of the Garden of Eden located in the Irano-Turanian region and safe against climate change? Regional Environmental Change.

Oksanen, J., Kindt, R., Legendre, P., O’Hara, R. B., Simpson, G. L., & Stevens, M. H. H. (2008). vegan: Community Ecology Package. R package version 1.11-0 [Computer software]. http://vegan.r-forge.r-project.org/

Пачоский [Pachoskiĭ], И. К. [I. K.]. (1891). Стадии развития флоры [Stages in the development of flora]. Вестник естествознания [Vestnik estestvoznaniia], 2(8), 261–270.

Paciorek, C. J., & McLachlan, J. S. (2009). Mapping ancient forests: Bayesian inference for spatio-temporal trends in forest composition using the fossil pollen proxy record. Journal of the American Statistical Association, 104(486), 608–622. https://doi.org/10.1198/jasa.2009.0026

Paczoski, J. (1930). Życie gromadne roślin [Social life of plants]. Polskie Towarzystwo Botaniczne. [Reprinted from “Życie gromadne roślin,” 1896, Wszechświat, 15(26, 27, 28)].

Papadopoulou, M., Tsiripidis, I., Panajiotidis, S., Fotiadis, G., Veres, D., Magyari, E., Bormann, M., Fontana, S., Shumilovskikh, L., Panagiotopoulos, K., Schäbitz, F., & Giesecke, T. (2022). Testing the potential of pollen assemblages to capture composition, diversity and ecological gradients of surrounding vegetation in two biogeographical regions of southeastern Europe. Vegetation History and Archaeobotany, 31, 1–15. https://doi.org/10.1007/s00334-021-00831-4

Parducci, L., Matetovici, I., Fontana, S. L., Bennett, K. D., Suyama, Y., Haile, J., Kjær, K. H., Larsen, N. K., Drouzas, A. D., & Willerslev, E. (2013). Molecular- and pollen-based vegetation analysis in lake sediments from central Scandinavia. Molecular Ecology, 22(13), 3511–3524. https://doi.org/10.1111/mec.12298

Pärtel, M., Hiiesalu, I., Öpik, M., & Wilson, S. D. (2012). Below-ground plant species richness: New insights from DNA-based methods. Functional Ecology, 26(4), 775–782. https://doi.org/10.1111/j.1365-2435.2012.02004.x

Pärtel, M., Szava-Kovats, R., & Zobel, M. (2011). Dark diversity: Shedding light on absent species. Trends in Ecology and Evolution, 26(3), 124–128. https://doi.org/10.1016/j.tree.2010.12.004

Pärtel, M., Szava-Kovats, R., & Zobel, M. (2013). Community completeness: Linking local and dark diversity within the species pool concept. Folia Geobotanica, 48(3), 307–317. https://doi.org/10.1007/s12224-013-9169-x

Pärtel, M., & Zobel, M. (1995). Small-scale dynamics and species richness in successional alvar plant communities. Ecography, 18(1), 83–90. https://doi.org/10.1111/j.1600-0587.1995.tb00121.x

Perret, J. S., Al-Belushi, M. E., & Deadman, M. (2007). Non-destructive visualization and quantification of roots using computed tomography. Soil Biology and Biochemistry, 39(2), 391–399. https://doi.org/10.1016/j.soilbio.2006.07.018

Pillar, V. D., Sabatini, F. M., Jandt, U., Camiz, S., & Bruelheide, H. (2021). Revealing the functional traits linked to hidden environmental factors in community assembly. Journal of Vegetation Science, 32(1), Article e12976. https://doi.org/10.1111/jvs.12976

Pitkänen, S. (1997). Correlation between stand structure and ground vegetation: Analytical approach. Plant Ecology, 131(1), 109–126. https://doi.org/10.1023/A:1009723603098

Price, J. N., Hiiesalu, I., Gerhold, P., & Pärtel, M. (2012). Small-scale grassland assembly patterns differ above and below the soil surface. Ecology, 93(6), 1290–1296. https://doi.org/10.1890/11-1942.1

PWN. (n.d.). Paczoski Józef. In Encyklopedia PWN. Retrieved May 24, 2022, from https://encyklopedia.pwn.pl/haslo/Paczoski-Jozef;3953154.html

Rabotnov, T. (1975). On phytocoenotypes. Phytocoenologia, 2, 66–72. https://doi.org/10.1127/phyto/2/1975/66

Rabotnov, T. (1980). On some problems of the coevolution of organisms. Phytocoenologia, 7, 1–7.

Ralska-Jasiewiczowa, M., Latałowa, M., Wasylikowa, K., Tobolski, K., Madeyska, E., Wright, H. E., & Turner, K. C. (Eds.). (2004). Late Glacial and Holocene history of vegetation in Poland based on isopollen maps. W. Szafer Institute of Botany, Polish Academy of Sciences.

Reintal, M., Tali, K., Haldna, M., & Kull, T. (2010). Habitat preferences as related to the prolonged dormancy of perennial herbs and ferns. Plant Ecology, 210(1), 111–123. https://doi.org/10.1007/s11258-010-9742-9

Rellán-Álvarez, R., Lobet, G., Lindner, H., Pradier, P.-L., Sebastian, J., Yee, M.-C., Geng, Y., Trontin, C., LaRue, T., Schrager-Lavelle, A., Haney, C. H., Nieu, R., Maloof, J., Vogel, J. P., & Dinneny, J. R. (2015). GLO-Roots: An imaging platform enabling multidimensional characterization of soil-grown root systems. eLife, 4, Article e07597. https://doi.org/10.7554/eLife.07597.001

Ronikier, M., Saługa, M., Jiménez, J. A., Ochyra, R., & Stryjak-Bogacka, M. (2018). Multilocus DNA analysis supports Didymodon gelidus (Musci, Pottiaceae) as a distinct endemic of the austral polar region. Acta Societatis Botanicorum Poloniae, 87(4), Article 3609. https://doi.org/10.5586/asbp.3609

Rucińska, A., Olszak, M., Świerszcz, S., Nobis, M., Zubek, S., Kusza, G., Boczkowska, M., & Nowak, A. (2021). Looking for hidden enemies of metabarcoding: Species composition, habitat and management can strongly influence DNA extraction while examining grassland communities. Biomolecules, 11(2), Article 318. https://doi.org/10.3390/biom11020318

Rucińska, A., Świerszcz, S., Nobis, M., Zubek, S., Boczkowska, M., Olszak, M., Kosiński, J., Nowak, S., & Nowak, A. (2022). Is it possible to understand a book missing a quarter of the letters? Unveiling the belowground species richness of grasslands. Agriculture, Ecosystems & Environment, 324, Article 107683. https://doi.org/10.1016/j.agee.2021.107683

Ruiz-Benito, P., Vacchiano, G., Lines, E. R., Reyer, C. P. O., Ratcliffe, S., Morin, X., Hartig, F., Mäkelä, A., Yousefpour, R., Chaves, J. E., Palacios-Orueta, A., Benito-Garzón, M., Morales-Molino, C., Camarero, J., Jump, A. S., Kattge, J., Lehtonen, A., Ibrom, A., Owen, H. J. F., & Zavala, M. A. (2020). Available and missing data to model impact of climate change on European forests. Ecological Modelling, 416, Article 108870. https://doi.org/10.1016/j.ecolmodel.2019.108870

Salas, E. A. L. (2020). Waveform LiDAR concepts and applications for potential vegetation phenology monitoring and modeling: A comprehensive review. Geo-Spatial Information Science, 24, 179–200. https://doi.org/10.1080/10095020.2020.1761763

Schmidtlein, S., Feilhauer, H., & Bruelheide, H. (2012). Mapping plant strategy types using remote sensing. Journal of Vegetation Science, 23(3), 395–405. https://doi.org/10.1111/j.1654-1103.2011.01370.x

Schneider, F. D., Morsdorf, F., Schmid, B., Petchey, O. L., Hueni, A., Schimel, D. S., & Schaepman, M. E. (2017). Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nature Communications, 8, Article 1441. https://doi.org/10.1038/s41467-017-01530-3

Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: Clustering, classification and density estimation using gaussian finite mixture models. The R Journal, 8(1), 289–317. https://doi.org/10.32614/RJ-2016-021

Shefferson, R. P. (2009). The evolutionary ecology of vegetative dormancy in mature herbaceous perennial plants. Journal of Ecology, 97(5), 1000–1009. https://doi.org/10.1111/j.1365-2745.2009.01525.x

Sitek, E., Nowak, B., Fecowicz, M., Gajewski, Z., Dańda, P., Kapała, K., & Kozik-Dąbek, B. (2020). Application of horticultural and tissue culture methods for ex situ conservation of endangered Primula farinosa L. Acta Societatis Botanicorum Poloniae, 89(1), Article 8913. https://doi.org/10.5586/asbp.8913

Sporbert, M., Welk, E., Seidler, G., Jandt, U., Aćić, S., Biurrun, I., Campos, J. A., Čarni, A., Cerabolini, B. E. L., Chytrý, M., Ćušterevska, R., Dengler, J., De Sanctis, M., Dziuba, T., Fagúndez, J., Field, R., Golub, V., He, T., Jansen, F., … Bruelheide, H. (2021). Different sets of traits explain abundance and distribution patterns of European plants at different spatial scales. Journal of Vegetation Science, 32(2), Article e13016. https://doi.org/10.1111/jvs.13016

Steinbauer, M. J., Grytnes, J.-A., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H., Rixen, C., Winkler, M., Bardy-Durchhalter, M., Barni, E., Bjorkman, A. D., Breiner, F. T., Burg, S., Czortek, P., Dawes, M. A., Delimat, A., Dullinger, S., Erschbamer, B., Felde, V. A., … Wipf, S. (2018). Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 556(7700), 231–234. https://doi.org/10.1038/s41586-018-0005-6

Su, Y., Guo, Q., Fry, D. L., Collins, B. M., Kelly, M., Flanagan, J. P., & Battles, J. J. (2016). A vegetation mapping strategy for conifer forests by combining airborne LiDAR data and aerial imagery. Canadian Journal of Remote Sensing, 42(1), 1–15. https://doi.org/10.1080/07038992.2016.1131114

Szafer, W. (1935). The significance of isopollen lines for the investigation of the geographical distribution of trees in the post-Glacial period. Bulletin de l’Academie Polonaise des Sciences et des Lettres Série B Sciences Naturelles, 1, 235–239.

Szumańska, I., Lubińska-Mielińska, S., Kamiński, D., Rutkowski, L., Nienartowicz, A., & Piernik, A. (2021). Invasive plant species distribution is structured by soil and habitat type in the city landscape. Plants, 10(4), Article 773. https://doi.org/10.3390/plants10040773

Teramoto, S., Takayasu, S., Kitomi, Y., Arai-Sanoh, Y., Tanabata, T., & Uga, Y. (2020). High-throughput three-dimensional visualization of root system architecture of rice using X-ray computed tomography. Plant Methods, 16, Article 66. https://doi.org/10.1186/s13007-020-00612-6

Testolin, R., Attorre, F., Borchardt, P., Brand, R. F., Bruelheide, H., Chytrý, M., De Sanctis, M., Dolezal, J., Finckh, M., Haider, S., Hemp, A., Jandt, U., Kessler, M., Korolyuk, A. Y., Lenoir, J., Makunina, N., Malanson, G. P., Montesinos-Tubée, D. B., Noroozi, J., … Jiménez-Alfaro, B. (2021). Global patterns and drivers of alpine plant species richness. Global Ecology and Biogeography, 30(6), 1218–1231. https://doi.org/10.1111/geb.13297

Testolin, R., Carmona, C. P., Attorre, F., Borchardt, P., Bruelheide, H., Dolezal, J., Finckh, M., Haider, S., Hemp, A., Jandt, U., Korolyuk, A. Y., Lenoir, J., Makunina, N., Malanson, G. P., Mucina, L., Noroozi, J., Nowak, A., … Jiménez-Alfaro, B. (2021). Global functional variation in alpine vegetation. Journal of Vegetation Science, 32(2), Article e13000. https://doi.org/10.1111/jvs.13000

Thienemann, A. (1926). Limnologie – Einführung [Introduction to limnology]. Jedermanns Bücherei.

Tichý, L. (2002). JUICE, software for vegetation classification. Journal of Vegetation Science, 13(3), 451–453. https://doi.org/10.1111/j.1654-1103.2002.tb02069.x

Tichý, L., & Chytrý, M. (2019). Probabilistic key for identifying vegetation types in the field: A new method and Android application. Journal of Vegetation Science, 30(5), 1035–1038. https://doi.org/10.1111/jvs.12799

Tichý, L., Chytrý, M., & Landucci, F. (2019). GRIMP: A machine-learning method for improving groups of discriminating species in expert systems for vegetation classification. Journal of Vegetation Science, 30(1), 5–17. https://doi.org/10.1111/jvs.12696

Tichý, L., Hennekens, S. M., Novák, P., Rodwell, J. S., Schaminée, J. H. J., & Chytrý, M. (2020). Optimal transformation of species cover for vegetation classification. Journal of Vegetation Science, 23(4), 710–717. https://doi.org/10.1111/avsc.12510

Träger, S., Öpik, M., Vasar, M., & Wilson, S. D. (2019). Belowground plant parts are crucial for comprehensively estimating total plant richness in herbaceous and woody habitats. Ecology, 100(2), Article e02575. https://doi.org/10.1002/ecy.2575

Tsiamis, K., Gervasini, E., D’Amico, F., Deriu, I., Roglia, E., Schade, S., Craglia, M., & De Jesus Cardoso, A. (2017). Citizen science application. Invasive alien species in Europe. Publications Office of the European Union. https://doi.org/10.2760/043856

Uyeda, K. A., Warkentin, K. K., Stow, D. A., O’Leary, J. F., Snavely, R. A., Lambert, J., Bolick, L. A., O’Connor, A., Munson, B., & Loerch, A. C. (2020). Vegetation mapping using hierarchical object-based image analysis applied to aerial imagery and lidar data. Applied Vegetation Science, 23(1), 80–93. https://doi.org/10.1111/avsc.12467

Vaca, R. A., Golicher, D. J., & Cayuela, L. (2011). Using climatically based random forests to downscale coarse-grained potential natural vegetation maps in tropical Mexico. Applied Vegetation Science, 14(3), 388–401. https://doi.org/10.1111/j.1654-109X.2011.01132.x

van Dusschoten, D., Metzner, R., Kochs, J., Postma, J. A., Pflugfelder, D., Bühler, J., Schurr, U., & Jahnke, S. (2016). Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiology, 170(3), 1176–1188. https://doi.org/10.1104/pp.15.01388

van Kleunen, M., Pyšek, P., Dawson, W., Essl, F., Kreft, H., Pergl, J., Weigelt, P., Stein, A., Dullinger, S., König, C., Lenzner, B., Maurel, N., Moser, D., Seebens, H., Kartesz, J., Nishino, M., Aleksanyan, A., Ansong, M., Antonova, L. A., … Winter, M. (2019). The Global Naturalized Alien Flora (GloNAF) database. Ecology, 100(1), Article e02542. https://doi.org/10.1002/ecy.2542

Volkova, P., Laczkó, L., Demina, O., Schanzer, I., & Sramkó, G. (2020). Out of Colchis: The colonization of Europe by Primula vulgaris Huds. (Primulaceae). Acta Societatis Botanicorum Poloniae, 89(3), Article 89313. https://doi.org/10.5586/asbp.89313

von Humboldt, A. (1807). Essai sur la géographie des plantes [Essay on the geography of plants]. Fr. Schoell.

von Humboldt, A. (1880). Briefe Alexander’s von Humboldt an seinen Bruder Wilhelm. Herausgegeben von der Familie von Humboldt in Ottmachau [Letters from Alexander von Humboldt to his brother Wilhelm. Published by the von Humboldt family in Otmuchów]. Verlag der J. G. Cotta’schen Buchhandlung.

von Humboldt, A., & Bonpland, A. (1807). Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer, auf Beobachtungen und Messungen gegründet, welche vom 10ten Grade nördlicher bis zum 10ten Grade südlicher Breite, in den Jahren 1799, 1800, 1801, 1802 und 1803 angestellt worden sind [Ideas for a geography of plants along with a natural pictures of the tropical countries, based on observations and measurements made from the 10th degree north to the 10th degree south latitude, in the years 1799, 1800, 1801, 1802 and 1803]. Bey F. G. Cotta; Bey F. Schoell. https://doi.org/10.5962/bhl.title.9310

von Humboldt, A., & Bonpland, A. (1822). Personal narrative of travels to the equinoctial regions of the New Continent during the years 1799–1804 (H. M. Williams, Trans.; 3rd ed., Vols. 1–2). Printed for Longman, Hurst, Rees, Orme, and Brown.

Wagner, V., Chytrý, M., Zelený, D., von Wehrden, H., Brinkert, A., Danihelka, J., Jansen, F., Hölzel, F., Kamp, J., Lustyk, P., Merunková, K., Palpurina, S., Preislerová, Z., & Wesche, K. (2017). Regional differences in soil pH niche among dry grassland plants in Eurasia. Oikos, 126(5), 660–670. https://doi.org/10.1111/oik.03369

Weigand, A., Abrahamczyk, S., Aubin, I., Bita-Nicolae, C., Bruelheide, H., Carvajal-Hernández, C. I., Cicuzza, D., Nascimento da Costa, L. E., Csiky, J., Dengler, J., de Gasper, A. L., Guerin, G. R., Haider, S., Hernández-Rojas, A., Jandt, U., Reyes-Chávez, J., Karger, D. N., Khine, P. K., Kluge, J., … Kessler, M. (2020). Global fern and lycophyte richness explained: How regional and local factors shape plot richness. Journal of Biogeography, 47(1), 59–71. https://doi.org/10.1111/jbi.13782

Wildi, O., & Orlóci, L. (1996). Numerical exploration of community patterns. A guide to the use of MULVA-5 (2nd ed.). SPB Academic Publishing b. v.

Wilson, S. D. (2007). Competition, resources, and vegetation during 10 years in native grassland. Ecology, 88(12), 2951–2958. https://doi.org/10.1890/07-0587.1

Wilson, S. D., & Tilman, D. (2002). Quadratic variation in old-field species richness along experimental gradients of disturbance and nitrogen. Ecology, 83(2), 492–504. https://doi.org/10.2307/2680030

Woźniak, G., Dyderski, M. K., Kompała-Bąba, A., Jagodziński, A. M., Pasierbiński, A., Błońska, B., Bierza, W., Magurno, F., & Sierka, E. (2021). Use of remote sensing to track post-industrial vegetation development. Land Degradation and Development, 32(3), 1426–1439. https://doi.org/10.1002/ldr.3789

Xu, J. (2016). Fungal DNA barcoding. Genome, 59(11), 913–932. https://doi.org/10.1139/gen-2016-0046

Yang, Y., Zhao, J., Zhao, P., Wang, H., Wang, B., Su, S., Li, M., Wang, L., Zhu, Q., Pang, Z., & Peng, C. (2019). Trait-based climate change predictions of vegetation sensitivity and distribution in China. Frontiers in Plant Science, 10, Article 908. https://doi.org/10.3389/fpls.2019.00908

Zając, A., & Zając, M. (Eds.). (2001). Atlas rozmieszczenia roślin w Polsce [Distribution atlas of vascular plants in Poland]. Instytut Botaniki Uniwersytetu Jagiellońskiego.

Zając, A., & Zając, M. (Eds.). (2019). Distribution atlas of vascular plants in Poland: Appendix. Instytut Botaniki Uniwersytetu Jagiellońskiego.

Zheng, Z., Zeng, Y., Schneider, F. D., Zhao, Y., Zhao, D., Schmid, B., Schaepman, M. E., & Morsdorf, F. (2021). Mapping functional diversity using individual tree-based morphological and physiological traits in a subtropical forest. Remote Sensing of Environment, 252, Article 112170. https://doi.org/10.1016/j.rse.2020.112170




DOI: https://doi.org/10.5586/asbp.912

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society