Tissue Culture Techniques for the Production of Interspecific Hybrids in Poland: History and Achievements
Abstract
Interspecific hybridization is a significant plant evolutionary process and, concomitantly, a frequently used method to broaden the genetic variability of species and genetically improve crops. However, in distant crosses, many prezygotic and postzygotic barriers are encountered that prevent free, uncontrolled gene flow between species. Therefore, various experimental methods exploiting tissue culture, such as in vitro fertilization, embryo rescue, and protoplast fusion, have been developed to raise hybrids that cannot be obtained naturally through conventional approaches.
Professor Maciej Zenkteler of the Adam Mickiewicz University in Poznań pioneered the use of tissue culture in Poland to overcome barriers to sexual crossing. In the mid-1960s, he employed in vitro pollination in which pollen grains were directly applied onto the surface of exposed ovules as the primary method to bypass prezygotic barriers and in vitro culture of isolated ovules and developing embryos (embryo rescue) to overcome post-zygotic barriers. These approaches proved effective for species possessing numerous ovules and large placentas, such as representatives of the families Caryophyllaceae, Solanaceae, and Brassicaceae. Soon thereafter, these methods were extended to other Polish institutes and universities and applied for crop improvement, such as for the production of intergeneric hybrids between Salix and Populus species, resynthesis and broadening of the genetic variability of oilseed rape (Brassica napus L.), and the generation of new interspecific hybrids of Allium.
In the late 1970s, Professor Zenkteler was the first to undertake protoplast fusion. At that time, it appeared that no incompatibility could exist at the fusion level and that somatic hybridization would supersede the possibilities offered by sexual hybridization; however, the reality turned out to be slightly harsh. Nonetheless, successful regeneration of different interspecific hybrids of potato, tomato, or gentians has been achieved by Polish research groups thus far.
Keywords
References
Adamus, A. (2004). Embryo-rescue for production of Allium cepa and Allium fistulosum interspecific hybrids. In M. G. Fári & I. Holb (Eds.), 5th International Symposium on In Vitro Culture and Horticultural Breeding “Biotechnology as Theory and Practice in Horticulture,” September 12–17, 2004, Debrecen, Hungary (p. 235). Published by the Organizers.
Adamus, A., & Samek, L. (2007). Żywotność pyłku i zaburzenia w jego tworzeniu u mieszańców F1 Allium cepa × A. fistulosum [The viability of pollen and the defects in its formation in Allium cepa × A. fistulosum F1 hybrids]. In P. Nowaczyk (Ed.), Naturalna i indukowana zmienność w genetycznym doskonaleniu roślin ogrodniczych [Spontaneous and induced variation for the genetic improvement of horticultural crops] (pp. 7–11). Wydawnictwo Uczelniane Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy.
Alexander, M. P. (1969). Differential staining of aborted and nonaborted pollen. Stain Technology, 44, 117–122. https://doi.org/10.3109/10520296909063335
Arcioni, S., & Pupilli, F. (2003). Somatic hybridization. In B. B. T. Thomas (Ed.), Encyclopedia of applied plant sciences (pp. 1423–1431). Academic Press. https://doi.org/10.1016/B0-12-227050-9/00184-8
Bagniewska-Zadworna, A., Zenkteler, M., Zenkteler, E., Wojciechowicz, M. K., Barakat, A. B., & Carlson, J. E. (2011). A successful application of the embryo rescue technique as a model for studying crosses between Salix viminalis and Populus species. Australian Journal of Botany, 59(4), 382–392. https://doi.org/10.1071/BT10270
Bołtowicz, D., Szczerbakowa, A., & Wielgat, B. (2005). RAPD analysis of the interspecific somatic hybrids Solanum bulbocastanum (+) S. tuberosum. Cellular and Molecular Biology Letters, 10, 151–162.
Carlson, P. S., Smith, H. H., & Dearing, R. D. (1972). Parasexual interspecific plant hybridization. Proceedings of the National Academy of Sciences of the United States of America, 69(8), 2292–2294. https://doi.org/10.1073/pnas.69.8.2292
Cegielska-Taras, T., Szała, L., Matuszczak, M., Babula-Skowrońska, D., Mikołajczyk, K., Popławska, W., Sosnowska, K., Hernacki, B., Olejnik, A., & Bartkowiak-Broda, I. (2015). Doubled haploid as a material for biotechnological manipulation and a modern tool for breeding of oilseed rape (Brassica napus L.). BioTechnologia, 96(1), 7–18. https://doi.org/10.5114/bta.2015.54169
Cegielska-Taras, T., Tykarska, T., Szała, L., Kuraś, M., & Krzymański, J. (2002). Direct plant development from microspore-derived embryos of winter oilseed rape Brassica napus L. ssp. oleifera (DC) Metzger. Euphytica, 124(3), 341–347. https://doi.org/10.1023/A:1015785717106
Chen, L., Guo, X., Xie, C., He, L., Cai, X., Tian, L., Song, B., & Liu, J. (2013). Nuclear and cytoplasmic genome components of Solanum tuberosum + S. chacoense somatic hybrids and three SSR alleles related to bacterial wilt resistance. Theoretical and Applied Genetics, 126, 1861–1872. https://doi.org/10.1007/s00122-013-2098-5
Chuda, A., & Adamus, A. (2005). Allium cepa × Allium roylei hybrids – Production and identification. Allium Improvement Newsletter, 15, 49–51.
Chuda, A., & Adamus, A. (2007). Charakterystyka organów generatywnych Allium cepa i Allium roylei oraz ich mieszańców [Characteristic of reproductive organs of Allium cepa, Allium roylei, and their hybrids]. In P. Nowaczyk (Ed.), Naturalna i indukowana zmienność w genetycznym doskonaleniu roślin ogrodniczych [Spontaneous and induced variation for the genetic improvement of horticultural crops] (pp. 25–31). Wydawnictwo Uczelniane Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy.
Chuda, A., & Adamus, A. (2009). Aspects of interspecific hybridization within edible Alliaceae. Acta Physiologiae Plantarum, 31, 223–227. https://doi.org/10.1007/s11738-008-0236-5
Chuda, A., & Adamus, A. (2012). Hybridization and molecular characterization of F1 Allium cepa × Allium roylei plants. Acta Biologica Cracoviensia, Series Botanica, 54(2), 25–31. https://doi.org/10.2478/v10182-012-0016-9
Chuda, A., Grzebelus, D., & Adamus, A. (2006). Efektywność otrzymywania mieszańców międzygatunkowych cebuli i ich identyfikacja [Effectiveness of obtaining interspecific hybrids of onion and their identification]. In W. Sodkiewicz, T. Sodkiewicz, & M. Surma (Eds.), Mieszańce oddalone roślin uprawnych [Distant hybrids of crop plants] (pp. 115–119). PAGEN Centre of Excellence in Plant Agrobiology and Molecular Genetics.
Chuda, A., Grzebelus, E., & Adamus, A. (2012). Experiments of backcrossing of interspecific F1 A. cepa × A. roylei hybrids with Allium cepa. Acta Horticulturae, 969, 113–116. https://doi.org/10.17660/ActaHortic.2012.969.13
Chuda, A., Kłosowska, K., & Adamus, A. (2015). Morphological, cytological and embryological characterization of F1 A. cepa × A. roylei hybrids. Acta Biologica Cracoviensia, Series Botanica, 57(2), 98–105. https://doi.org/10.1515/abcsb-2015-0025
Davey, M. (2017). Somatic hybridization. In B. Thomas, B. G. Murray, & D. J. B. T. Murphy (Eds.), Encyclopedia of applied plant sciences (2nd ed., pp. 480–486). Academic Press. https://doi.org/10.1016/B978-0-12-394807-6.00151-9
Dhooghe, E., Reheul, D., & Van Labeke, M. C. (2021). Overcoming pre-fertilization barriers in intertribal crosses between Anemone coronaria L. and Ranunculus asiaticus L. Horticulturae, 7, Article 529. https://doi.org/10.3390/horticulturae7120529
Fry, W. E. (2008). Phytophthora infestans: The plant (and R gene) destroyer. Molecular Plant Pathology, 9, 385–402. https://doi.org/10.1111/j.1364-3703.2007.00465.x
Gavrilenko, T., Larkka, J., Pehu, E., & Rokka, V. M. (2002). Identification of mitotic chromosomes of tuberous and non-tuberous Solanum species (Solanum tuberosum and Solanum brevidens) by GISH in their interspecific hybrid. Genome, 45, 442–449. https://doi.org/10.1139/g01-136
Havey, M. J. (1997). On the origin and distribution of normal cytoplasm of onion. Genetic Resources and Crop Evolution, 44, 307–313. https://doi.org/10.1023/A:1008680713032
Hawkes, J. G. (1990). The potato, evolution, biodiversity, and genetic resources. Belhaven Press.
Helgeson, J. P., Pohlman, D., Austin, S., Haberlach, G. T., Wielgus, S. M., Ronis, D., Zambolim, L., Tooley, P., McGrath, J. M., James, R. V., & Stevenson, W. R. (1998). Somatic hybrids between Solanum bulbocastanum and potato: A new source of resistance to late blight. Theoretical and Applied Genetics, 96, 738–742. https://doi.org/10.1007/s001220050796
Iovene, M., Savarese, S., Cardi, T., Frusciante, L., Scotti, N., Simon, P. W., & Carputo, D. (2007). Nuclear and cytoplasmic genome composition of Solanum bulbocastanum (+) S. tuberosum somatic hybrids. Genome, 50, 443–450. https://doi.org/10.1139/G07-024
Jakuczun, H., & Wasilewicz-Flis, I. (2004). New sources of potato resistance to Phytophthora infestans at the diploid level. Plant Breeding and Seed Science, 50, 137–145.
Katche, E., Quezada-Martinez, D., Katche, E. I., Vasquez-Teuber, P., & Mason, A. S. (2019). Interspecific hybridization for Brassica crop improvement. Crop Breeding Genetics and Genomics, 1(1), Article e190007. https://doi.org/10.20900/cbgg20190007
Khrustaleva, L. I., & Kik, C. (1998). Cytogenetical studies in the bridge cross Allium cepa × (A. fistulosum × A. roylei). Theoretical and Applied Genetics, 96, 8–14. https://doi.org/10.1007/s001220050702
Khrustaleva, L. I., & Kik, C. (2000). Introgression of Allium fistulosum into A. cepa mediated by A. roylei. Theoretical and Applied Genetics, 100, 17–26. https://doi.org/10.1007/s001220050003
Kiełkowska, A. (2012). Meiotic irregularities in interspecific crosses within edible alliums. In A. Swan (Ed.), Meiosis – Molecular mechanisms and cytogenetic diversity (pp. 349–366). InTech Open Access Publisher. https://doi.org/10.5772/30029
Kiełkowska, A., & Adamus, A. (2010). Ocena morfologiczna, cytologiczna i molekularna międzygatunkowych mieszańców F1 A. galanthum × A. cepa [Morphological, cytological and molecular evaluation of interspecific F1 (A. galanthum × A. cepa) hybrids]. Biotechnologia, 2(89), 146–155.
Kik, C. (2002). Exploitation of wild relatives for the breeding of cultivated Allium species. In H. D. Rabinowitch & L. Currah (Eds.), Allium crop science: Recent advances (pp. 81–100). CABI Publishing. https://doi.org/10.1079/9780851995106.0081
Kulawiec, M., Tagashira, N., Pląder, W., Bartoszewski, G., Kuć, D., Śnieżko, R., & Malepszy, S. (2003). Chromosome number variation in somatic hybrids between transgenic tomato (Lycopersicon esculentum) and Solanum lycopersicoides. Journal of Applied Genetics, 44(4), 431–447.
Menke, U., Schilde-Rentscheler, L., Ruoss, B., Zanke, C., Hemleben, V., & Ninnemann, H. (1996). Somatic hybrids between the cultivated potato Solanum tuberosum L. and the 1EBN wild species Solanum pinnatisectum Dun.: Morphological and molecular characterization. Theoretical and Applied Genetics, 92, 617–626. https://doi.org/10.1007/BF00224566
Niemann, J., Bocianowski, J., Stuper-Szablewska, K., & Wojciechowski, T. (2020). New interspecific Brassica hybrids with high levels of heterosis for fatty acids composition. Agriculture, 10(6), Article 221. https://doi.org/10.3390/agriculture10060221
Niemann, J., Bocianowski, J., & Wojciechowski, A. (2018). Effects of genotype and environment on seed quality traits variability in interspecific cross-derived Brassica lines. Euphytica, 214, Article 193. https://doi.org/10.1007/s10681-018-2270-8
Niemann, J., Kaczmarek, J., Książczyk, T., Wojciechowski, A., & Jędryczka, M. (2017). Chinese cabbage (Brassica rapa ssp. pekinensis) – A valuable source of resistance to clubroot (Plasmodiophora brassicae). European Journal of Plant Pathology, 147, 181–198. https://doi.org/10.1007/s10658-016-0991-x
Niemann, J., Olender, M., Weigt, D., Tomkowiak, A., & Nawracała, J. (2019). Integration of cytological and molecular analysis to confirm a hybridity in F1 Brassica progeny. Pakistan Journal of Botany, 51, 493–498. https://doi.org/10.30848/PJB2019-2(28)
Niemann, J., Olender, M., Wojciechowski, A., & Tomkowiak, A. (2015). Interspecific hybridization between Brassica napus and Brassica rapa ssp. chinensis genotypes through embryo rescue and their evaluation for crossability. BioTechnologia, 96(2), 184–191. https://doi.org/10.5114/bta.2015.54204
Niemann, J., Szwarc, J., Bocianowski, J., Weigt, D., & Mrówczyński, M. (2020). In-field screening for host plant resistance to Delia radicum and Brevicoryne brassicae within selected rapeseed cultivars and new interspecific hybrids. Open Life Sciences, 15, 711–720. https://doi.org/10.1515/biol-2020-0074
Niemann, J., Wojciechowski, A., & Janowicz, J. (2012). Broadening the variability of quality traits in rapeseed through interspecific hybridization with an application of immature embryo culture. BioTechnologia, 93(2), 109–115. https://doi.org/10.5114/bta.2012.46575
Orczyk, W., Przetakiewicz, J., & Nadolska-Orczyk, A. (2003). Somatic hybrids of Solanum tuberosum – Application to genetics and breeding. Plant Cell, Tissue and Organ Culture, 74, 1–13. https://doi.org/10.1023/A:1023396405655
Pindel, A., Wiszniewska, A., & Piwowarczyk, B. (2012). Professor E. Pojnar’s pioneer studies on isolated protoplasts, their continuation and development. In memory of Professor Edward Pojnar (1919–2011). BioTechnologia, 93(2), 81–86. https://doi.org/10.5114/bta.2012.46571
Polgar, Z., Wielgus, A. M., Horvath, S., & Helgeson, J. P. (1999). DNA analysis of potato + Solanum brevidens somatic hybrid lines. Euphytica, 105, 103–107. https://doi.org/10.1023/A:1003451327553
Przetakiewicz, J., Nadolska-Orczyk, A., Kuć, D., & Orczyk, W. (2007). Tetraploid somatic hybrids of potato (Solanum tuberosum L.) obtained from diploid breeding lines. Cellular & Molecular Biology Letters, 12, 253–267. https://doi.org/10.2478/s11658-006-0068-5
Rakosy-Tican, E., Ramona, T., Nachtigall, M., Molnar, I., & Denes, R. E. (2015). The recipient potato cultivar influences the genetic makeup of the somatic hybrids between five potato cultivars and one cloned accession of sexually incompatible species Solanum bulbocastanum Dun. Plant Cell, Tissue and Organ Culture, 122, 395–407. https://doi.org/10.1007/s11240-015-0777-4
Simmonds, N., & Smartt, J. (1999). Principles of crop improvement (2nd ed.). Wiley-Blackwell.
Smyda, P., Jakuczun, H., Dębski, K., Śliwka, J., Thieme, R., Nachtigall, M., Wasilewicz-Flis, I., & Zimnoch-Guzowska, E. (2013). Development of somatic hybrids S. × michoacanum Bitter. (Rydb.) (+) S. tuberosum L. and autofused 4x S. × michoacanum plants as potential sources of late blight resistance for potato breeding. Plant Cell Reports, 32, 1231–1241. https://doi.org/10.1007/s00299-013-1422-5
Smyda-Dajmund, P., Śliwka, J., Villano, C., Janiszewska, M., Aversano, R., Bednarek, P. T., Carputo, D., & Zimnoch-Guzowska, E. (2021). Analysis of cytosine methylation in genomic DNA of Solanum × michoacanum (+) S. tuberosum somatic hybrids. Agronomy, 11(5), Article 845. https://doi.org/10.3390/agronomy11050845
Smyda-Dajmund, P., Śliwka, J., Wasilewicz-Flis, I., Jakuczun, H., & Zimnoch-Guzowska, E. (2016). Genetic composition of interspecific potato somatic hybrids and autofused 4x plants evaluated by DArT and cytoplasmic DNA markers. Plant Cell Reports, 35, 1345–1358. https://doi.org/10.1007/s00299-016-1966-2
Smyda-Dajmund, P., Śliwka, J., Wasilewicz-Flis, I., Jakuczun, H., & Zimnoch-Guzowska, E. (2017). BC1 and F1 progeny from Solanum × michoacanum (+) S. tuberosum somatic hybrids, autofused 4x S. michoacanum and cultivated potato. American Journal of Potato Research, 94, 323–333. https://doi.org/10.1007/s12230-017-9568-2
Sosnowska, K., & Cegielska-Taras, T. (2014). Application of in vitro pollination of opened ovaries to obtain Brassica oleracea L. × B. rapa L. hybrids. In Vitro Cellular and Developmental Biology – Plant, 50, 257–262. https://doi.org/10.1007/s11627-013-9587-8
Sosnowska, K., Cegielska-Taras, T., Liersch, A., Karłowski, W., Bocianowski, J., Szała, L., Mikołajczyk, K., & Popławska, W. (2017). Genetic relationships among resynthesized, semi-resynthesized and natural Brassica napus genotypes. Euphytica, 213(9), Article 212. https://doi.org/10.1007/s10681-017-2000-7
Sosnowska, K., Majka, M., Majka, J., Bocianowski, J., Kasprowicz, M., Książczyk, T., Szała, L., & Cegielska-Taras, T. (2020). Chromosome instabilities in resynthesized Brassica napus revealed by FISH. Journal of Applied Genetics, 61, 323–335. https://doi.org/10.1007/s13353-020-00557-5
Sosnowska, K., Szała, L., Olejnik, A., & Cegielska-Taras, T. (2010). Preliminary study on resynthesis of winter oilseed rape (Brassica napus L.). Rośliny Oleiste – Oilseed Crops, 31(2), 257–265.
Szała, L., Kaczmarek, Z., Popławska, W., Liersch, A., Wójtowicz, M., Matuszczak, M., Biliński, Z. R., Sosnowska, K., Stefanowicz, M., & Cegielska-Taras, T. (2019). Estimation of seed yield in oilseed rape to identify the potential of semi-resynthesized parents for the development of new hybrid cultivars. PLoS One, 14(4), Article e0215661. https://doi.org/10.1371/journal.pone.0215661
Szała, L., Sosnowska, K., & Cegielska-Taras, T. (2020). Induced chromosome doubling in microspores and regenerated haploid plants of Brassica napus. Acta Biologica Cracoviensia, Series Botanica, 62(1), 23–31. https://doi.org/10.24425/abcsb.2019.127750
Szała, L., Sosnowska, K., Popławska, W., Liersch, A., Olejnik, A., Kozłowska, K., Bocianowski, J., & Cegielska-Taras, T. (2016). Development of new restorer lines for CMS ogura system with the use of resynthesized oilseed rape (Brassica napus L.). Breeding Science, 4, 516–521. https://doi.org/10.1270/jsbbs.15042
Szczerbakowa, A., Bołtowicz, D., Lebecka, R., Radomski, P., & Wielgat, B. (2005). Characteristic of the interspecific somatic hybrids Solanum pinnatisectum (+) S. tuberosum H-8105. Acta Physiologiae Plantarum, 27, 317–325. https://doi.org/10.1007/s11738-005-0002-x
Szczerbakowa, A., Bołtowicz, D., & Wielgat, B. (2003). Interspecific somatic hybrids Solanum bulbocastanum (+) S. tuberosum H-8105. Acta Physiologiae Plantarum, 25, 365–373. https://doi.org/10.1007/s11738-003-0018-z
Szczerbakowa, A., Maciejewska, U., Zimnoch-Guzowska, E., & Wielgat, B. (2003). Somatic hybrids Solanum nigrum (+) S. tuberosum: Morphological assessment and verification of hybridity. Plant Cell Reports, 21, 577–584. https://doi.org/10.1007/s00299-002-0555-8
Szczerbakowa, A., Tarwacka, J., Oskiera, M., Jakuczun, H., & Wielgat, B. (2010). Somatic hybridization between the diploids of S. × michoacanum and S. tuberosum. Acta Physiologiae Plantarum, 32, 867–873. https://doi.org/10.1007/s11738-010-0472-3
Ślusarkiewicz-Jarzina, A., & Zenkteler, M. (1983). Development of hybrid plants from ovules of Nicotiana tabacum pollinated in vitro with pollen grains of Nicotiana knightiana. Experientia, 39, 1399–1400. https://doi.org/10.1007/BF01990125
Tapingkae, T., Zulkarnain, Z., Kawaguchi, M., Ikeda, T., & Taji, A. (2012). Somatic (asexual) procedures (haploids, protoplasts, cell selection) and their applications. In A. Altman & P. M. Hasegawa (Eds.), Plant biotechnology and agriculture. Prospects for the 21st century (pp. 141–162). Academic Press. https://doi.org/10.1016/B978-0-12-381466-1.00010-9
Tarwacka, J., Polkowska-Kowalczyk, L., Kolano, B., Śliwka, J., & Wielgat, B. (2013). Interspecific somatic hybrids Solanum villosum (+) S. tuberosum, resistant to Phytophthora infestans. Journal of Plant Physiology, 170, 1541–1548. https://doi.org/10.1016/j.jplph.2013.06.013
Thieme, R., Darsow, U., Rakosy-Tican, L., Kang, Z., Gavrilenko, T., Antonova, O., Heimbach, U., & Thieme, T. (2004). Use of somatic hybridization to transfer resistance to late blight and potato virus Y (PVY) into cultivated potato. Plant Breeding and Seed Science, 50, 113–118.
Thieme, R., Rakosy-Tican, E., Gavrilenko, T., Antonova, O., Schubert, J., Nachtigall, M., Heimbach, U., & Thieme, T. (2008). Novel somatic hybrids (Solanum tuberosum L. + Solanum tarnii) and their fertile BC1 progenies express extreme resistance to potato virus Y and late blight. Theoretical and Applied Genetics, 116, 691–700. https://doi.org/10.1007/s00122-007-0702-2
Tiwari, J. K., Devi, S., Ali, N., Luthre, S. K., Kumar, V., Bhardwaj, V., Sigh, R. K., Rawat, S., & Chakrabarti, S. K. (2018). Progress in somatic hybridization research in potato during the past 40 years. Plant, Cell, Tissue and Organ Culture, 132, 225–238. https://doi.org/10.1007/s11240-017-1327-z
Tomiczak, K. (2020). Molecular and cytogenetic description of somatic hybrids between Gentiana cruciata L. and G. tibetica King. Journal of Applied Genetics, 61(1), 13–24. https://doi.org/10.1007/s13353-019-00530-x
Tomiczak, K., Mikuła, A., & Rybczyński, J. J. (2015). Protoplast culture and somatic cell hybridization of gentians. In J. J. Rybczyński, M. R. Davey, & A. Mikuła (Eds.), The Gentianaceae – Volume 2: Biotechnology and applications (pp. 163–185). Springer-Verlag. https://doi.org/10.1007/978-3-642-54102-5_7
Tomiczak, K., Sliwinska, E., & Rybczyński, J. J. (2017). Protoplast fusion in the genus Gentiana: Genomic composition and genetic stability of somatic hybrids between Gentiana kurroo Royle and G. cruciata L. Plant Cell, Tissue and Organ Culture, 131(1), 1–14. https://doi.org/10.1007/s11240-017-1256-x
Tonosaki, K., Osabe, K., Kawanabe, T., & Fujimoto, R. (2016). The importance of reproductive barriers and the effect of allopolyploidization on crop breeding. Breeding Science, 66, 333–349. https://doi.org/10.1270/jsbbs.15114
van der Meer, Q. P., & de Vries, J. N. (1990). An interspecific cross between Allium roylei Stearn and Allium cepa L., and it backcross to A. cepa. Euphytica, 47, 29–31. https://doi.org/10.1007/BF00040359
van der Valk, P., de Vries, S. E., Everink, J. T., Verstappen, F., & de Vries, J. N. (1991). Pre- and post-fertilization barriers to backcrossing the interspecific hybrid between Allium fistulosum L. and A. cepa L. with A. cepa. Euphytica, 53, 201–209. https://doi.org/10.1007/BF00023272
van Heusden, A. W., van Ooijen, J. W., Vrielink, R., Verbeek, W. H. J., Wietsma, W. A., & Kik, C. (2000). A genetic map of an interspecific cross in Allium based on amplified fragment length polymorphism (AFLPTM) markers. Theoretical and Applied Genetics, 100, 118–126. https://doi.org/10.1007/s001220050017
van Tuyl, J. M., & de Jeu, M. J. (1997). Methods for overcoming interspecific crossing barriers. In K. R. Shivanna & V. K. Sawhney (Eds.), Pollen biotechnology for crop production and improvement (pp. 273–292). Cambridge University Press. https://doi.org/10.1017/CBO9780511525469.015
Visarada, K. B. R. S., & Venkateswaran, K. (2019). Wide hybridization. In C. Aruna, K. B. R. S. Visarada, B. V. Bhat, & V. A. Tonapi (Eds.), Breeding sorghum for diverse end uses (pp. 131–139). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101879-8.00008-5
Wojciechowski, A. (1985). Interspecific hybrids between Brassica campestris and B. oleracea. I. Effectiveness of crossing. Observations of pollen tube growth. The course of embryogenesis. Genetica Polonica, 26(4), 423–436.
Zenkteler, M. (1967). Test-tube fertilization of ovules in Melandrium album Mill. with pollen grains of several species of the Caryophyllaceae family. Experientia, 23, 775–776. https://doi.org/10.1007/BF02154172
Zenkteler, M. (1970). Test-tube fertilization of ovules in Melandrium album Mill. with pollen grains of Datura stramonium L. Experientia, 26, 661–662. https://doi.org/10.1007/BF01898751
Zenkteler, M. (1990). In-vitro fertilization of ovules of some species of Brassicaceae. Plant Breeding, 105, 221–228. https://doi.org/10.1111/j.1439-0523.1990.tb01199.x
Zenkteler, M. (1992). Wide hybridization in higher plants by applying the method of test tube pollination of ovules. In Y. Dattée (Ed.), Reproductive biology and plant breeding (pp. 205–214). Springer-Verlag. https://doi.org/10.1007/978-3-642-76998-6_20
Zenkteler, M. (1995). Self and cross pollination of ovules in test tubes. In M. Terzi, R. Cella, & A. Falavigna (Eds.), Current issues in plant molecular and cellular biology (pp. 191–199). Kluwer Academic Publishers. https://doi.org/10.1007/978-94-011-0307-7_25
Zenkteler, M. (2000). In vitro pollination of angiosperm ovules with gymnosperm pollen grains. In Vitro Cellular & Developmental Biology – Plant, 36(2), 125–127. https://doi.org/10.1007/s11627-000-0025-3
Zenkteler, M., & Melchers, G. (1978). In vitro hybridization by sexual methods and by fusion of somatic protoplasts – Experiments with Nicotiana tabacum × Petunia hybrida, N. tabacum × Hyoscyamus niger, H. niger × P. hybrida, Melandrium album × P. hybrida. Theoretical and Applied Genetics, 52, 81–90. https://doi.org/10.1007/BF00281321
Zenkteler, M., Tegeder, M., & Schieder, O. (1998). Embryological studies of reciprocal crosses between Vicia faba and Vicia narbonensis. Acta Societatis Botanicorum Poloniae, 67, 37–43. https://doi.org/10.5586/asbp.1998.004
Zenkteler, M., Wojciechowicz, M., Bagniewska-Zadworna, A., & Jeżowski, S. (2003). Preliminary results on studies of in vivo and in vitro sexual reproduction of Salix viminalis L. Dendrobiology, 50, 37–42.
Zenkteler, M., Wojciechowicz, M., Bagniewska-Zadworna, A., Zenkteler, E., & Jeżowski, S. (2005). Intergeneric crossability studies on obtaining hybrids between Salix viminalis and four Populus species. In vivo and in vitro pollination of pistils and the formation of embryos and plantlets. Trees, 19, 638–643. https://doi.org/10.1007/s00468-005-0427-2
Zenkteler, M., & Zenkteler, E. (2013). 65 years of in vitro culture in Poland. Acta Societatis Botanicorum Poloniae, 82, 183–192. https://doi.org/10.5586/asbp.2013.022
Zimnoch-Guzowska, E., Lebecka, R., Kryszczuk, A., Maciejewska, U., Szczerbakowa, A., & Wielgat, B. (2003). Resistance to Phytophthora infestans in somatic hybrids of Solanum nigrum L. and diploid potato. Theoretical and Applied Genetics, 107, 43–48. https://doi.org/10.1007/s00122-003-1221-4
Zulkarnain, Z., Tapingkae, T., & Taji, A. (2015). Applications of in vitro techniques in plant breeding. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), Advances in plant breeding strategies: Breeding, biotechnology and molecular tools (pp. 293–328). Springer. https://doi.org/10.1007/978-3-319-22521-0_10
DOI: https://doi.org/10.5586/asbp.9119
|
|
|