Polish Contribution to Global Research on Somatic Embryogenesis

Anna Mikuła, Małgorzata Gaj, Małgorzata Grzyb, Teresa Hazubska-Przybył, Ewa Kępczyńska, Jan Kępczyński, Jan Rybczyński, Karolina Tomiczak, Anna M. Wójcik

Abstract


Somatic embryogenesis (SE) is a complex process that begins with regaining totipotency in some somatic cells, proceeds through embryo development and maturation, and ends with the formation of a whole plant. Since the first publications on SE in 1958, this regeneration process has been applied to the in vitro propagation of many plant species and has led to the development of some specific model systems. SE has been used to expand our understanding of the cytomorphological, physiological, biochemical, and genetic processes that govern the earliest developmental events in the life of plants. This paper summarizes the achievements of Polish research groups working on SE systems established for several plants (gentians, the tree fern Cyathea delgadii Sternb., and conifers) and three model species (Arabidopsis thaliana, Medicago sativa, and M. truncatula). SE systems have used a broad spectrum of experimental approaches involving genomic tools (transcriptomics, proteomics, and chromatin analyses), physiological methods which focus on phytohormones, and cytological techniques. Studies on the experimental models of A. thaliana and Medicago spp. have resulted in the identification of new genetic and epigenetic elements of the complex regulatory network controlling embryogenic induction in plant somatic cells. The protocol developed for ferns has provided a unique and simple system for cytological analysis of early SE events that occur in a single cell of initial explants. Gentian embryogenic suspension cultures have successfully been used in broad biotechnological applications, including plant transformation, protoplast isolation, culture, and fusion. Systems described for coniferous species effectively produced many vigorous somatic seedlings and cost-efficient storage of genotypes during clonal field-testing. The research undertaken by Polish scientists has resulted in developing experimental systems that have enabled significant advances in SE knowledge.

Keywords


Arabidopsis thaliana; conifers; Cyathea delgadii; experimental model systems; Gentiana spp.; Medicago spp.

Full Text:

PDF XML (JATS)

References


Aoshima, Y. (2005). Efficient embryogenesis in the callus of tea (Camellia sinensis) enhanced by the osmotic stress or antibiotics treatment. Plant Biotechnology, 22(4), 277–280. https://doi.org/10.5511/plantbiotechnology.22.277

Atmane, N., Blervacq, A. S., Michaux-Ferriere, N., & Vasseur, J. (2000). Histological analysis of indirect somatic embryogenesis in the marsh clubmoss Lycopodiella inundata (L.) Holub (Pteridophytes). Plant Science, 156(2), 159–167. https://doi.org/10.1016/S0168-9452(00)00244-2

Bach, A. (1992). Induction of somatic embryogenesis and regeneration of plants in Freesia hybrida cultures. Folia Horticulture, 4(1), 11–21.

Bach, A., Pawłowska, B., & Micor, J. (1994). Somatyczna embriogeneza wybranych rodzajów jedno- i dwuliściennych roślin ozdobnych [Somatic embryogenesis of some genus of mono- and dicotyledonous ornamentals]. Prace Ogrodu Botanicznego Polskiej Akademii Nauk, 5–6, 433–437.

Burza, W., Woźniak, B., Tarkowska, J. A., & Malepszy, M. (1994). Cytohistological analysis of somatic embryogenesis in cucumber (Cucumis sativus L.). II. Natural fluorescence and direct somatic embryogenesis from protoplasts. Acta Societatis Botanicorum Poloniae, 63(3–4), 265–268. https://doi.org/10.5586/asbp.1994.035

Canhoto, J. M., Mesquita, J. F., & Cruz, G. S. (1996). Ultrastructural changes in cotyledons of pineapple guava (Myrtaceae) during somatic embryogenesis. Annals of Botany, 78(4), 513–521. https://doi.org/10.1006/anbo.1996.0149

Chalupa, V. (1985). Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst. Communicationes Instituti Forestalis Cechosloveniae, 14, 57–63.

Domżalska, L., Kędracka-Krok, S., Jankowska, U., Grzyb, M., Sobczak, M., Rybczyński, J. J., & Mikuła, A. (2017). Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb. Plant Science, 258, 61–76. https://doi.org/10.1016/j.plantsci.2017.01.017

Fiuk, A., & Rybczyński, J. J. (2007). The effect of several factors on somatic embryogenesis and plant regeneration in protoplast cultures of Gentiana kurroo (Royle). Plant Cell, Tissue and Organ Culture, 91, 263–271. https://doi.org/10.1007/s11240-007-9293-5

Fiuk, A., & Rybczyński, J. J. (2008). Factors influencing efficiency of somatic embryogenesis of Gentiana kurroo (Royle) cell suspension. Plant Biotechnology Reports, 2, 33–38. https://doi.org/10.1007/s11816-008-0045-8

Fransz, P. F., & Schel, J. H. N. (1991). Cytodifferentiation during the development of friable embryogenic callus of maize (Zea mays). Canadian Journal of Botany, 69, 26–33. https://doi.org/10.1139/b91-005

Gaj, M. D. (2001). Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture, 64, 39–46. https://doi.org/10.1023/A:1010679614721

Gaj, M. D. (2011). Somatic embryogenesis and plant regeneration in the culture of Arabidopsis thaliana (L.) Heynh. immature zygotic embryos. In T. Thorpe & E. Yeung (Eds.), Plant embryo culture (pp. 257–265). Humana Press. https://doi.org/10.1007/978-1-61737-988-8_18

Gaj, M. D., Zhang, S., Harada, J. J., & Lemaux, P. G. (2005). Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta, 222, 977–988. https://doi.org/10.1007/s00425-005-0041-y

Gliwicka, M., Nowak, K., Balazadeh, S., Mueller-Roeber, B., & Gaj, M. (2013). Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS ONE, 8(7), Article e69261. https://doi.org/10.1371/journal.pone.0069261

Godel-Jedrychowska, K., Kulinska-Lukaszek, K., Horstman, A., Soriano, M., Li, M., Malota, K., Boutilier, K., & Kurczynska, E. U. (2020). Symplasmic isolation marks cell fate changes during somatic embryogenesis. Journal of Experimental Botany, 71(9), 2612–2628. https://doi.org/10.1093/jxb/eraa041

Grzyb, M., Kalandyk, A., Waligórski, P., & Mikuła, A. (2017). The content of endogenous hormones and sugars in the process of early somatic embryogenesis in the tree fern Cyathea delgadii Sternb. Plant Cell, Tissue and Organ Culture, 129, 387–397. https://doi.org/10.1007/s11240-017-1185-8

Grzyb, M., & Mikuła, A. (2019). Explant type and stress treatment determine the uni- and multicellular origin of somatic embryos in the tree fern Cyathea delgadii Sternb. Plant Cell, Tissue and Organ Culture, 136, 221–230. https://doi.org/10.1007/s11240-018-1507-5

Grzyb, M., Wróbel-Marek, J., Kurczyńska, E., Sobczak, M., & Mikuła, A. (2020). Symplasmic isolation contributes to somatic embryo induction and development in the tree fern Cyathea delgadii Sternb. Plant & Cell Physiology, 61(7), 1273–1284. https://doi.org/10.1093/pcp/pcaa058

Grzybkowska, D., Morończyk, J., Wójcikowska, B., & Gaj, M. D. (2018). Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis. Plant Growth Regulation, 85, 243–256. https://doi.org/10.1007/s10725-018-0389-1

Gulzar, B., Mujib, A., Malik, M. Q., Sayeed, R., Mamgain, J., & Ejaz, B. (2020). Genes, proteins and other networks regulating somatic embryogenesis in plants. Journal of Genetic Engineering and Biotechnology, 18, Article 31. https://doi.org/10.1186/s43141-020-00047-5

Hakman, I., Fowke, L. C., von Arnold, S., & Eriksson, T. (1985). The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce). Plant Science, 38, 53–59. https://doi.org/10.1016/0168-9452(85)90079-2

Hazubska-Przybył, T., & Bojarczuk, K. (2008). Somatic embryogenesis of selected spruce species (Picea abies, P. omorika, P. pungens ‘Glauca’ and P. breweriana). Acta Societatis Botanicorum Poloniae, 77(3), 189–199. https://doi.org/10.5586/asbp.2008.023

Hazubska-Przybył, T., Chmielarz, P., Michalak, M., & Bojarczuk, K. (2010). Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce). Plant Cell, Tissue and Organ Culture, 102, 35–44. https://doi.org/10.1007/s11240-010-9701-0

Hazubska-Przybył, T., Chmielarz, P., Michalak, M., Dering, M., & Bojarczuk, K. (2013). Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowth-dehydration method. Plant Cell, Tissue and Organ Culture, 113(2), 303–313. https://doi.org/10.1007/s11240-012-0270-2

Hazubska-Przybył, T., Kalemba, E. M., Ratajczak, E., & Bojarczuk, K. (2016). Effects of abscisic acid and an osmoticum on the maturation, starch accumulation and germination of Picea spp. somatic embryos. Acta Physiologiae Plantarum, 38, Article 59. https://doi.org/10.1007/s11738-016-2078-x

Hazubska-Przybył, T., Ratajczak, E., Kalemba, E. M., & Bojarczuk, K. (2013). Growth regulators and guaiacol peroxidase activity during the induction phase of somatic embryogenesis in Picea species. Dendrobiology, 69, 77–86. https://doi.org/10.12657/denbio.069.009

Hazubska-Przybył, T., Ratajczak, E., Obarska, A., & Pers-Kamczyc, E. (2020). Different roles of auxins in somatic embryogenesis efficiency in two Picea species. International Journal of Molecular Sciences, 21(9), Article 3394. https://doi.org/10.3390/ijms21093394

Igielski, R., & Kępczyńska, E. (2017). Gene expression and metabolite profiling of gibberellin biosynthesis during induction of somatic embryogenesis in Medicago truncatula Gaertn. PLoS ONE, 12(7), Article e0182055. https://doi.org/10.1371/journal.pone.0182055

Jayasekera, R. D. E., & Bell, P. R. (1959). The effect of various experimental treatments on the development of the embryo of the fern Thelypteris palustris. Planta, 54(1), 1–14. https://doi.org/10.1007/BF01916146

Johnson, G. P., & Renzaglia, K. S. (2008). Embryology of Ceratopteris richardii (Pteridaceae, tribe Ceratopterideae), with emphasis on placental development. Journal of Plant Research, 121, 581–592. https://doi.org/10.1007/s10265-008-0187-3

Kawano, T. (2003). Roles of the reactive oxygen species-generating peroxidase reactions in plant defence and growth induction. Plant Cell Reports, 21, 829–837. https://doi.org/10.1007/s00299-003-0591-z

Kepczynski, J., & Florek, I. (1997). The influence of JA-ME and ABA on induction of somatic embryogenesis in Medicago sativa L. tissue cultures. In R. H. Ellis, M. Black, A. J. Murdoch, & T. D. Hong (Eds.), Basic and applied aspects of seed biology (pp. 137–140). Kluwer Academic Publishers. https://doi.org/10.1007/978-94-011-5716-2

Kępczyńska, E., & Orłowska, A. (2021). Profiles of endogenous ABA, bioactive GAs, IAA and their metabolites in Medicago truncatula Gaertn. non-embryogenic and embryogenic tissues during induction phase in relation to somatic embryo formation. Planta, 253(3), Article 67. https://doi.org/10.1007/s00425-021-03582-8

Kępczyńska, E., Ruduś, I., & Kępczyński, J. (2009a). Endogenous ethylene in indirect somatic embryogenesis of Medicago sativa L. Plant Growth Regulation, 59, 63–73. https://doi.org/10.1007/s10725-009-9388-6

Kępczyńska, E., Ruduś, I., & Kępczyński, J. (2009b). Abscisic acid and methyl jasmonate as regulators of ethylene biosynthesis during somatic embryogenesis of Medicago sativa L. Acta Physiologiae Plantarum, 31, 1263–1270. https://doi.org/10.1007/s11738-009-0363-7

Kępczyńska, E., & Zielińska, S. (2006). Regulation of Medicago sativa L. somatic embryos regeneration by gibberellin A3 and abscisic acid in relation to starch content and α-amylase activity. Plant Growth Regulation, 49, 209–217. https://doi.org/10.1007/s10725-006-9106-6

Kępczyńska, E., & Zielińska, S. (2011). Disturbance of ethylene biosynthesis and perception during somatic embryogenesis in Medicago sativa L. reduces embryos’ ability to regenerate. Acta Physiologiae Plantarum, 33, 1969–1980. https://doi.org/10.1007/s11738-011-0745-5

Kępczyńska, E., & Zielińska, S. (2013). The role of endogenous ethylene in carbohydrate metabolism in Medicago sativa L. somatic embryos in relation to their ability to regeneration. Journal of Plant Growth Regulation, 32, 191–199. https://doi.org/10.1007/s00344-012-9288-2

Kępczyński, J., McKersie, B. D., & Brown, D. C. W. (1992). Requirement of ethylene for growth of callus and somatic embryogenesis in Medicago sativa L. Journal of Experimental Botany, 43, 1199–1202. https://doi.org/10.1093/jxb/43.9.1199

Konieczny, R., Libik, M., Tuleja, M., Niewiadomska, E., & Miszalski, Z. (2008). Oxidative events during in vitro regeneration of sunflower. Acta Physiologiae Plantarum, 30, 71–79. https://doi.org/10.1007/s11738-007-0092-8

Kurczyńska, E. U., Gaj, M., Ujczak, A., & Mazur, E. (2007). Histological analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh. Planta, 226, 619–628. https://doi.org/10.1007/s00425-007-0510-6

Latkowska, M. J., Kvaalen, H., & Appelgren, M. (2000). Genotype dependent blue and red light inhibition of the proliferation of the embryogenic tissue of Norway spruce. In Vitro Cellular and Developmental Biology – Plant, 36(1), 57–60. https://doi.org/10.1007/s11627-000-0013-7

Ledwoń, A., & Gaj, M. D. (2009). LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells. Plant Cell Reports, 28, 1677–1688. https://doi.org/10.1007/s00299-009-0767-2

Malepszy, S., & Solarek, E. (1986). In vitro culture of Cucumis sativus L. IV. Conditions for cell suspension. Genetica Polonica, 27, 2–4.

Malepszy, S., Niemirowicz-Szczytt, K., & Wiszniewska, J. (1982). Cucumber (Cucumis sativus L.) somatic embryogenesis in vitro. Acta Biologica, 10, 218–220.

McKersie, B. D., Senaratna, T., Bowley, S. R., Brown, D. C. W., Krochko, J. E., & Bewley, J. D. (1989). Application of artificial seed technology in the production of hybrid alfalfa (Medicago sativa L.). Plant Cellular and Developmental Biology, 25, 1183–1188. https://doi.org/10.1007/BF02621272

Meijer, E. G. M., & Brown, D. C. W. (1987). A novel system for rapid high frequency somatic embryogenesis in Medicago sativa. Physiologia Plantarum, 69, 591–596. https://doi.org/10.1111/j.1399-3054.1987.tb01971.x

Mikuła, A., Chmielarz, P., Hazubska-Przybył, T., Kulus, D., Maślanka, M., Pawłowska, B., & Zimnoch-Guzowska, E. (in press). Cryopreservation of plant tissues in Poland: science contribution, current status and application. Acta Societatis Botanicorum Poloniae, 91, Article 9132.

Mikuła, A., Fiuk, A., & Rybczyński, J. J. (2005). Induction, maintenance and preservation of embryogenic competence of Gentiana cruciata L. cultures. Acta Biologica Cracoviensia, Series Botanica, 47, 227–236.

Mikuła, A., Makowski, D., Walters, C., & Rybczyński, J. J. (2011). Exploration of cryo-methods to preserve tree and herbaceous fern gametophytes. In H. Fernández, A. Kumar, & M. A. Revilla (Eds.), Working with ferns: Issues and applications (pp. 173–192). Springer. https://doi.org/10.1007/978-1-4419-7162-3_13

Mikuła, A., Olas, M., Sliwińska, E., & Rybczyński, J. J. (2008). Cryopreservation by encapsulation of Gentiana spp. cell suspensions maintains re-growth, embryogenic competence and DNA content. CryoLetters, 29, 409–418.

Mikuła, A., Pożoga, M., Grzyb, M., & Rybczyński, J. J. (2015). An unique system of somatic embryogenesis in the tree fern Cyathea delgadii Sternb.: The importance of explant type, and physical and chemical factors. Plant Cell, Tissue and Organ Culture, 123, 467–478. https://doi.org/10.1007/s11240-015-0850-z

Mikuła, A., Pożoga, M., Tomiczak, K., & Rybczyński, J. J. (2015). Somatic embryogenesis in ferns: A new experimental system. Plant Cell Reports, 34(5), 783–794. https://doi.org/10.1007/s00299-015-1741-9

Mikuła, A., & Rybczyński, J. J. (1994). Somatyczna embriogeneza u Gentiana spp. [Somatic embryogenesis of Gentiana taxa]. Prace Ogrodu Botanicznego Polskiej Akademii Nauk, 5–6, 425–432.

Mikuła, A., Rybczyński, J. J., Skierski, J., Latkowska, M. J., & Fiuk, A. (2005). Somatic embryogenesis of Gentiana genus IV.: Characterisation of Gentiana cruciata and Gentiana tibetica embryogenic cell suspensions. In A. K. Hvoslef-Eide & W. Preil (Eds.), Liquid culture systems for in vitro plant propagation (pp. 345–358). Springer. https://doi.org/10.1007/1-4020-3200-5_26

Mikuła, A., Rybczyński, J. J., Tykarska, T., & Kuraś, M. (2001). Somatic embryogenesis of Gentiana genus. II. Scanning and ultrastructural analysis of early stages of somatic embryogenesis in liquid medium. Biological Bulletin of Poznań, 38, 47–53.

Mikuła, A., Skierski, J., & Rybczyński, J. J. (2002). Somatic embryogenesis of Gentiana genus. III. Characterisation of tree-year-old embryogenic suspension of Gentiana pannonica (Scop) originated from various seedling explants. Acta Physiologiae Plantarum, 24, 311–322. https://doi.org/10.1007/s11738-002-0057-x

Mikuła, A., Tomaszewicz, W., Dziurka, M., Kaźmierczak, A., Grzyb, M., Sobczak, M., Zdańkowski, P., & Rybczyński, J. (2021). The origin of the Cyathea delgadii Sternb. somatic embryos is determined by the developmental state of donor tissue and mutual balance of selected metabolites. Cells, 10(6), Article 1388. https://doi.org/10.3390/cells10061388

Mikuła, A., Tomiczak, K., Domżalska, L., & Rybczyński, J. J. (2015). Cryopreservation of Gentianaceae: Trends and applications. In J. J. Rybczyński, M. R. Davey, & A. Mikuła (Eds.), The Gentianaceae – Volume 2: Biotechnology and applications (pp. 267–286). Springer. https://doi.org/10.1007/978-3-642-54102-5_11

Mikuła, A., Tomiczak, K., & Rybczyński, J. J. (2011). Cryopreservation enhances embryogenic capacity of Gentiana cruciata (L.) suspension culture and maintains (epi)genetic uniformity of regenerants. Plant Cell Reports, 30, 565–574. https://doi.org/10.1007/s00299-010-0970-1

Mikuła, A., Tomiczak, K., Wójcik, A., & Rybczyński, J. J. (2011). Encapsulation-dehydration method elevates embryogenic abilities of Gentiana kurroo cell suspension and carrying on genetic stability of its regenerants after cryopreservation. Acta Horticulturae, 908, 143–154. https://doi.org/10.17660/ActaHortic.2011.908.16

Mikuła, A., Tykarska, T., & Kuraś, M. (2005). Ultrastructure of Gentiana tibetica proembryogenic cells before and after cooling treatments. CryoLetters, 26, 367–378.

Mikuła, A., Tykarska, T., Zielińska, M., Kuraś, M., & Rybczyński, J. J. (2004). Ultrastructural changes in zygotic embryos of Gentiana punctata (L.) during callus formation and somatic embryogenesis. Acta Biologica Cracoviensia, Series Botanica, 46, 109–120.

Mikuła, A., Wesołowska, M., Kapusta, J., Skrzypczak, L., & Rybczyński, J. J. (1996). Cytomorphological studies on somatic embryogenesis of Gentiana tibetica (King) and G. cruciata (L.). Acta Societatis Botanicorum Poloniae, 65(1–2), 47–51. https://doi.org/10.5586/asbp.1996.008

Morończyk, J., Brąszewska, A., Wójcikowska, B., Chwiałkowska, K., Nowak, K., Wójcik, A. M., Kwaśniewski, M., & Gaj, M. D. (2022). Insights into the histone acetylation-mediated regulation of the transcription factor genes that control the embryogenic transition in the somatic cells of Arabidopsis. Cells, 11, Article 863. https://doi.org/10.3390/cells11050863

Nagmani, R., & Bonga, J. M. (1985). Embryogenesis in sub-cultured callus of Larix decidua. Canadian Journal of Forest Research, 15, 1088–1091. https://doi.org/10.1139/x85-177

Nawrot-Chorabik, K. (2009). Somaclonal variation in embryogenic cultures of silver fir (Abies alba mill.). Plant Biosystems, 143(2), 377–385. https://doi.org/10.1080/11263500902722717

Nawrot-Chorabik, K. (2014). Interactions between embryogenic callus of Abies alba and Heterobasidion spp. in dual cultures. Biologia Plantarum, 58(2), 363–369. https://doi.org/10.1007/s10535-014-0405-x

Nawrot-Chorabik, K. (2015). The effect of explant origin, media and growth regulators on the initiation and proliferation of embryogenic callus of Pinus sylvestris in somatic embryogenesis. Phyton – Annales Rei Botanicae, 55(2), 279–295. https://doi.org/10.12905/0380.phyton55(2)2015-0279

Nawrot-Chorabik, K. (2016). Plantlet regeneration through somatic embryogenesis in Nordmann’s fir (Abies nordmanniana). Journal of Forestry Research, 27(6), 1219–1228. https://doi.org/10.1007/s11676-016-0265-7

Nawrot-Chorabik, K. (2017). Response of the callus cells of fir (Abies nordmanniana) to in vitro heavy metal stress. Folia Forestralia Polonica, Series A, 59(1), 25–33. https://doi.org/10.1515/ffp-2017-0003

Nawrot-Chorabik, K., Grad, B., & Kowalski, T. (2016). Interactions between callus cultures of Pinus sylvestris and pine fungi with different trophic properties. Forest Pathology, 46(3), 179–186. https://doi.org/10.1111/efp.12240

Nowak, K., & Gaj, M. D. (2016a). Stress-related function of bHLH109 in somatic embryo induction in Arabidopsis. Journal of Plant Physiology, 193, 119–126. https://doi.org/10.1016/j.jplph.2016.02.012

Nowak, K., & Gaj, M. D. (2016b). Transcription factors in the regulation of somatic embryogenesis. In V. M. Loyola-Vargas & N. Ochoa-Alejo (Eds.), Somatic embryogenesis: Fundamental aspects and applications (pp. 53–79). Springer. https://doi.org/10.1007/978-3-319-33705-0_5

Nowak, K., Morończyk, J., Grzyb, M., Szczygieł-Sommer, A., & Gaj, M. D. (2022). miR172 regulates WUS during somatic embryogenesis in Arabidopsis via AP2. Cells, 11, Article 718. https://doi.org/10.3390/cells11040718

Nowak, K., Morończyk, J., Wójcik, A., & Gaj, M. D. (2020). AGL15 controls the embryogenic reprogramming of somatic cells in Arabidopsis through the histone acetylation-mediated repression of the miRNA biogenesis genes. International Journal of Molecular Sciences, 21(18), Article 6733. https://doi.org/10.3390/ijms21186733

Nowak, K., Wójcikowska, B., & Gaj, M. D. (2015). ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway. Planta, 241, 967–985. https://doi.org/10.1007/s00425-014-2225-9

Nowak, K., Wójcikowska, B., Gajecka, M., Elżbieciak, A., Morończyk, J., Wójcik, A. M., Żemła, P., Citrene, S., Kiwior-Wesołowska, A., & Gaj, M. D. (2022). Improvement of the in vitro regeneration of barley plants via histone acetylation inhibition with trichostatin A [Manuscript in preparation]. University of Silesia in Katowice.

Orłowska, A., & Kępczyńska, E. (2018). Identification of Polycomb Repressive Complex1, Trithorax group genes and their simultaneous expression with WUSCHEL, WUSCHEL-related Homeobox5 and SHOOT MERISTEMLESS during the induction phase of somatic embryogenesis in Medicago truncatula Gaertn. Plant, Cell Tissue and Organ Culture, 134, 345–356. https://doi.org/10.1007/s11240-018-1425-6

Orłowska, A., & Kępczyńska, E. (2020a). Oxidative status in Medicago truncatula Gaertn. non-embryogenic and emryogenic tissues with particular reference to somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 140, 35–48. https://doi.org/10.1007/s11240-019-01709-0

Orłowska, A., & Kępczyńska, E. (2020b). Involvement of O2 ·− in the regulation of Polycomb, Tritorax and LEC1, L1L, WUS, WOX5, STM gene expression during somatic embryogenesis induction in Medicago truncatula. Plant Cell, Tissue and Organ Culture, 142, 201–212. https://doi.org/10.1007/s11240-020-01854-x

Orłowska, A., Igielski, R., Łagowska, K., & Kępczyńska, E. (2017). Identification of LEC 1, L1L and Polycomb Repressive Complex 2 genes and their expression during the induction phase of Medicago truncatula Gaertn. somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 129, 119–132. https://doi.org/10.1007/s11240-016-1161-8

Pawłowska, B., & Ptak, A. (2022). Achievements of national research centers in the protection of Polish flora with the use of in vitro tools and biotechnology [Manuscript submitted for publication]. University of Agriculture in Krakow.

Podwyszyńska, M., Orlikowska, T., Trojak-Goluch, A., & Wojtania, A. (2022). Application and improvement of in vitro culture systems for commercial production of ornamental, fruit, and industrial plants in Poland. Acta Societatis Botanicorum Poloniae, 91, Article 914. https://doi.org/10.5586/asbp.914

Ruduś, I., Kępczyńska, E., & Kępczyński, J. (2001). The influence of the jasmonates and abscisic acid on callus growth and somatic embryogenesis in Medicago sativa L. tissue culture. Acta Physiologiae Plantarum, 23, 103–107. https://doi.org/10.1007/s11738-001-0029-6

Ruduś, I., Kępczyńska, E., & Kępczyński, J. (2006). Comparative efficiency of abscisic acid and methyl jasmonate for indirect somatic embryogenesis in Medicago sativa L. Plant Growth Regulation, 48, 1–11. https://doi.org/10.1007/s10725-005-5136-8

Ruduś, I., Kępczyńska, E., Kępczyński, J., Wasternack, C., & Miersch, O. (2005). Changes in jasmonates and 12-oxophytodienoic acid contents of Medicago sativa L. during somatic embryogenesis. Acta Physiologiae Plantarum, 27, 317–324. https://doi.org/10.1007/s11738-005-0055-x

Ruduś, I., Weiler, E. W., & Kępczyńska, E. (2009). Do stress-related phytohormones, abscisic acid and jasmonic acid play a role in the regulation of Medicago sativa L. somatic embryogenesis? Plant Growth Regulation, 59, 159–169. https://doi.org/10.1007/s10725-009-9399-3

Rybczyński, J., Wojciechowska, B., & Ponitka, A. (1986). Somatic embryogenesis and plantlets regeneration from barley × alloplasmatic rye derived callus. Genetica Polonica, 27, 13–18.

Rybczyński, J. J., & Wójcik, A. I. (2019). The effect of L-glutamine on the genetic transformation of embryogenic cell suspensions of gentian species (Gentiana lutea L., Gentiana cruciata L., and Gentiana kurroo Royle) using Agrobacterium tumefaciens. BioTechnologia, 100(1), 5–18. https://doi.org/10.5114/bta.2019.83207

Rybczyński, J. J., & Zduńczyk, W. (1986). Somatic embryogenesis and plantlet regeneration in the genus Secale. Theoretical Applied Genetics, 73(2), 267–271. https://doi.org/10.1007/BF00289284

Rybczyński, J. J., & Zimny, J. (1985). Screening of cultivar varieties of Secale cereale (L.) in order to obtain somatic embryogenesis. Proceedings of the Eucarpia Meeting of the Cereals Section of Rye, Svalov, June 11–15, 1985 (pp. 33–55). Svalöf AB.

Shohael, A. M., Ali, M. B., Hahn, E. J., & Paek, K. Y. (2007). Glutathione metabolism and antioxidant responses during Eleutherococcus senticosus somatic embryo development in a bioreactor. Plant Cell, Tissue and Organ Culture, 89, 121–129. https://doi.org/10.1007/s11240-007-9220-9

Stolarz, A., & Lörz, H. (1986). Somatic embryogenesis in vitro manipulation and plant regeneration from immature embryos of hexaploid Triticale (× Triticosecale Wittmack). Zeitschrift für Pflanzenzüchtung, 96, 353–362.

Szczygieł, K., Hazubska-Przybył, T., & Bojarczuk, K. (2007). Somatic embryogenesis of selected coniferous tree species of the genera Picea, Abies and Larix. Acta Societatis Botanicorum Poloniae, 76(1), 7–15. https://doi.org/10.5586/asbp.2007.001

Szczygieł-Sommer, A., & Gaj, M. D. (2019). The miR396–GRF regulatory module controls the embryogenic response in Arabidopsis via an auxin-related pathway. International Journal of Molecular Sciences, 20(20), Article 5221. https://doi.org/10.3390/ijms20205221

Szypuła, W., Pietrosiuk, A., Suchocki, P., Olszowska, O., Furmanowa, M., & Kazimierska, O. (2005). Somatic embryogenesis and in vitro culture of Huperzia selago shoots as a potential source of huperzine A. Plant Science, 168(6), 1443–1452. https://doi.org/10.1016/j.plantsci.2004.12.021

Szyrajew, K., Bielewicz, D., Dolata, J., Wójcik, A. M., Nowak, K., Szczygieł-Sommer, A., Szweykowska-Kulinska, Z., Jarmolowski, A., & Gaj, M. D. (2017). MicroRNAs are intensively regulated during induction of somatic embryogenesis in Arabidopsis. Frontiers in Plant Science, 8, Article 18. https://doi.org/10.3389/fpls.2017.00018

Thorpe, T. A. (1995). In vitro embryogenesis in plants. Springer. https://doi.org/10.1007/978-94-011-0485-2

Tomaszewicz, W., Cioć, M., Dos Santos Szewczyk, K., Grzyb, M., Pietrzak, W., Pawłowska, B., & Mikuła, A. (2022). Enhancing in vitro production of the tree fern Cyathea delgadii and modifying secondary metabolite profiles by stimulation with LED lighting. Cells, 11, Article 486. https://doi.org/10.3390/cells11030486

Tomiczak, K. (2020). Molecular and cytogenetic description of somatic hybrids between Gentiana cruciata L. and G. tibetica King. Journal of Applied Genetics, 61, 13–24. https://doi.org/10.1007/s13353-019-00530-x

Tomiczak, K., & Markowski, M. (2021). The influence of sucrose concentration and cryopreservation via encapsulation-dehydration on growth kinetics, embryogenic potential and secondary metabolite production of cell suspension cultures of two gentian species: Gentiana capitata Buch.-Ham. ex D. D. In J. Kwaśniewska & J. Wróbel-Marek (Eds.), 10th Biennial PSEPB Conference “Experimental plant biology at various scales: From molecules to environment” (p. 171). Polish Society of Experimental Plant Biology.

Tomiczak, K., Mikuła, A., & Rybczyński, J. J. (2015). Protoplast culture and somatic cell hybridization of gentians. In J. J. Rybczyński, M. R. Davey, & A. Mikuła (Eds.), The Gentianaceae – Volume 2: Biotechnology and applications (pp. 163–185). Springer. https://doi.org/10.1007/978-3-642-54102-5_7

Tomiczak, K., Sliwinska, E., & Rybczyński, J. J. (2016). Comparison of the morphogenic potential of five Gentiana species in leaf mesophyll protoplast culture and ploidy stability of regenerated calli and plants. Plant Cell, Tissue and Organ Culture, 126, 319–331. https://doi.org/10.1007/s11240-016-1000-y

Tomiczak, K., Sliwinska, E., & Rybczyński, J. J. (2017). Protoplast fusion in the genus Gentiana: Genomic composition and genetic stability of somatic hybrids between Gentiana kurroo Royle and G. cruciata L. Plant Cell, Tissue and Organ Culture, 131, 1–14. https://doi.org/10.1007/s11240-017-1256-x

Välimäki, S., Hazubska-Przybył, T., Ratajczak, E., Mikko, T., Varis, S., & Aronen, T. (2021). Somatic embryo yield and quality from Norway spruce embryogenic tissue proliferated in suspension culture. Frontiers in Plant Sciences, 12, Article 791549. https://doi.org/10.3389/fpls.2021.791549

Verdeil, J. L., Hocher, V., Huet, C., Grosdemange, F., Escoute, J., Ferriere, N., & Nicole, M. (2001). Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Annals of Botany, 88(1), 9–18. https://doi.org/10.1006/anbo.2001.1408

Woodward, S., & Pearce, R. B. (1988). The role of stilbenes in resistance of Sitka spruce [Picea sitchensis (Bong.) Carr.] to entry of fungal pathogens. Physiological and Molecular Plant Pathology, 33, 127–149. https://doi.org/10.1016/0885-5765(88)90049-5

Wójcik, A., & Rybczyński, J. J. (2015). Electroporation and morphogenic potential of Gentiana kurroo (Royle) embryogenic cell suspension protoplasts. BioTechnologia, 96(1), 19–29. https://doi.org/10.5114/bta.2015.54170

Wójcik, A. M. (2020). Research tools for the functional genomics of plant miRNAs during zygotic and somatic embryogenesis. International Journal of Molecular Sciences, 21(14), Article 4969. https://doi.org/10.3390/ijms21144969

Wójcik, A. M., & Gaj, M. D. (2016). miR393 contributes to the embryogenic transition induced in vitro in Arabidopsis via the modification of the tissue sensitivity to auxin treatment. Planta, 244, 231–243. https://doi.org/10.1007/s00425-016-2505-7

Wójcik, A. M., Mosiolek, M., Karcz, J., Nodine, M. D., & Gaj, M. D. (2018). Whole mount in situ localization of miRNAs and mRNAs during somatic embryogenesis in Arabidopsis. Frontiers in Plant Science, 9, Article 1277. https://doi.org/10.3389/fpls.2018.01277

Wójcik, A. M., Nodine, M. D., & Gaj, M. D. (2017). miR160 and miR166/165 contribute to the LEC2-mediated auxin response involved in the somatic embryogenesis induction in Arabidopsis. Frontiers in Plant Science, 8, Article 2024. https://doi.org/10.3389/fpls.2017.02024

Wójcik, A. M., Wójcikowska, B., & Gaj, M. D. (2020). Current perspectives on the auxin-mediated genetic network that controls the induction of somatic embryogenesis in plants. International Journal of Molecular Sciences, 21(4), Article 1333. https://doi.org/10.3390/ijms21041333

Wójcikowska, B., Botor, B., Morończyk, J., Wójcik, A. M., Nodzynski, T., Karcz, J., & Gaj, M. D. (2018). Trichostatin A triggers an embryogenic transition in Arabidopsis explants via an auxin-related pathway. Frontiers in Plant Science, 9, Article 1353. https://doi.org/10.3389/fpls.2018.01353

Wójcikowska, B., Chwiałkowska, K., Nowak, K., Citerne, S., Novak, O., Wójcik, A. M., Morończyk, J., Kiwior-Wesołowska, A., Francikowski, J., Kwaśniewski, M., & Gaj, M. D. (2022). Insights into trichostatin A-induced transcriptome in search of histone acetylation regulated genes involved in somatic embryogenesis in Arabidopsis thaliana [Manuscript in preparation]. University of Silesia in Katowice.

Wójcikowska, B., & Gaj, M. D. (2015). LEAFY COTYLEDON2-mediated control of the endogenous hormone content: Implications for the induction of somatic embryogenesis in Arabidopsis. Plant Cell, Tissue and Organ Culture, 121, 255–258. https://doi.org/10.1007/s11240-014-0689-8

Wójcikowska, B., & Gaj, M. D. (2016). Somatic embryogenesis in Arabidopsis. In V. M. Loyola-Vargas & N. Ochoa-Alejo (Eds.), Somatic embryogenesis: Fundamental aspects and applications (pp. 185–199). Springer. https://doi.org/10.1007/978-3-319-33705-0_11

Wójcikowska, B., & Gaj, M. D. (2017). Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis. Plant Cell Reports, 36, 843–858. https://doi.org/10.1007/s00299-017-2114-3

Wójcikowska, B., Jaskóła, K., Gasiorek, P., Meus, M., Nowak, K., & Gaj, M. D. (2013). LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta, 238, 425–440. https://doi.org/10.1007/s00425-013-1892-2

Wójcikowska, B., Wójcik, A. M., & Gaj, M. D. (2020). Epigenetic regulation of auxin-induced somatic embryogenesis in plants. International Journal of Molecular Sciences, 21(7), Article 2307. https://doi.org/10.3390/ijms21072307

Zimny, J., & Lörz, H. (1986). Somatic embryogenesis and plant regeneration from meristematic tissue of Secale cereale (rye). In W. Horn, C. J. Jensen, W. Odenbach, & O. Schieder (Eds.), Genetic manipulation in plant breeding (pp. 503–505). Walter de Gruyter. https://doi.org/10.1515/9783110871944-090

Zimny, J., & Rybczyński, J. J. (1986). Somatic embryogenesis of triticale. In W. Horn, C. J. Jensen, W. Odenbach, & O. Schieder (Eds.), Genetic manipulation in plant breeding (pp. 507–510). Walter de Gruyter. https://doi.org/10.1515/9783110871944-091

Zimny, J., & Sowa, S. (in press). Somatic embryogenesis, genetic modification, and GMOs at the Department of Plant Biotechnology and Cytogenetics at the IHAR. Acta Societatis Botanicorum Poloniae, 91, Article 9129.

Żytkowiak, R. (1995). Indukcja somatycznej embriogenezy w kulturach kalusowych modrzewia europejskiego (Larix decidua Mill.) [Induction of somatic embryogenesis in callus cultures of larch (Larix decidua Mill.)]. Arboretum Kórnickie, 40, 113–123.




DOI: https://doi.org/10.5586/asbp.9115

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society