In Vitro Culture as a Tool for Studying Plant Developmental Processes at the Physiological Level in Poland

Agnieszka Płażek, Franciszek Dubert


Over the last 40 years, in vitro tissue culture has developed dynamically and has become a popular technique for scientific research in the field of biology. Initially, studies were carried out to develop procedures to obtain callus cultures, cell suspensions, and protoplasts of various plant species. Over time, these cultures have been used to analyze the course of processes and mechanisms that occur at the cellular level, including the course of embryological development, formation of cellular structures, polyploidization, signal transduction, gene expression, and responses to various stress factors. In a minireview, different nutritional, hormonal, atmospheric, and light conditions occurring in in vitro cultures, which are stressful conditions compared to those in ex vitro plant culture, were discussed. In this review, some examples of physiological studies conducted on in vitro culture by Polish scientists are presented, including studies carried out to optimize the composition of media that induce callus and plant regeneration; determine the use of in vitro culture for the preservation of endangered plant species; understand the mechanisms of resistance responses to pathogens, salinity, nutritional stress, and low temperatures; and determine the potential production of plants with different chemical compositions. The potential of sterile plant culture is large and beyond the scope of its current use. Therefore, the number and variety of applications of these cultures will be significantly greater in the future.


abiotic and biotic stresses; callus; cell suspension; nutritional stress; regenerants; protection of endangered species; protoplasts

Full Text:



Ahloowalia, B. S. (1998). In-vitro techniques and mutagenesis for the improvement of vegetatively propagated plants. In S. M. Jain, D. S. Brar, & B. S. Ahloowalia (Eds.), Somaclonal variation and induced mutations in crop improvement (pp. 293–309). Springer.

Biesaga-Kościelniak, J., & Filek, M. (2010). Occurrence and physiology of zearalenone as a new plant hormone. In E. Lichtfouse (Ed.), Sociology, organic farming, climate change and soil science (pp. 419–435). Springer.

Chawla, H. S., & Wenzel, G. (1987). In vitro selection of barley and wheat for resistance against Helminthosporium sativum. Theoretical and Applied Genetics, 74(6), 841–845.

Clifton-Brown, J. C., Chiang, Y. C., & Hodkinson, T. R. (2008). Miscanthus: Genetic resources and breeding potential to enhance bioenergy production. In W. Vermerris (Ed.), Genetic improvement of bioenergy crops (pp. 273–290). Springer.

Dubert, F., & Płażek, A. (2012). Stress as a factor of evolution. BioTechnologia, 93(2), 238.

Dubert, F., Marcińska, I., Biesaga-Kościelniak, J., & Filek, M. (1989). Zastosowanie kultur tkankowych w badaniach termoindukcji rozwoju generatywnego pszenicy ozimej [The application of tissue cultures in the studying of the thermoinduction of generative development of winter wheat]. Biuletyn IHAR, 171–172, 153–160.

Dubert, F., Marcińska, I., Biesaga-Kościelniak, J., & Szmider, I. (1993). The effectiveness of vernalization of immature embryos of winter wheat var. Grana as related to age and exogenous phytohormones. Journal of Agronomy & Crop Science, 170, 234–242.

Dziurka, K., Skrzypek, E., & Dubert, F. (2019). Breaking seed dormancy of Astragalus penduliflorus Lam. Acta Societatis Botanicorum Poloniae, 88(1), Article 3617.

Dziurka, M., Dziurka, K., Ostrowska, A., Janeczko, A., Dubert, F., & Biesaga-Kościelniak, J. (2019). Hormonomic approach to the understanding of winter wheat flowering induction. FEBS Open Bio, 9(S1), 309.

Filek, M., Dubert, F., Biesaga-Kościelniak, J., Marcińska, I., & Mizerski, R. (1998). The effect of selected chemicals, factors that influence the ability of wheat callus to differentiation on physico-chemical properties of cell, membranes. II. Changes of electric properties of cell surface. Current Trends in Biophysics, 22(2), 57–61.

Filek, M., Gzyl-Malcher, B., Zembala, M., Bednarska, E., Laggner, P., & Kriechbaum, M. (2010). Effect of selenium on characteristics of rape chloroplasts modified by cadmium. Journal of Plant Physiology, 167(1), 28–33.

Filek, M., Hołda, M., Macháčková, I., & Krekule, J. (2005). The effect of electric field on callus induction with rape hypocotyls. Zeitschrift für Naturforschung C, 60(11–12), 876–882.

Gilliard, G., Huby, E., Cordelier, S., Ongena, M., Dhondt-Cordelier, S., & Deleu, M. (2021). Protoplast: A valuable toolbox to investigate plant stress perception and response. Frontiers in Plant Science, 12, Article 749581.

Głowacka, K., Jeżowski, S., & Kaczmarek, Z. (2009). Polyploidization of Miscanthus sinensis and Miscanthus × giganteus by plant colchicine treatment. Industrial Crops and Products, 30(3), 444–446.

Głowacka, K., Jeżowski, S., & Kaczmarek, Z. (2010). In vitro induction of polyploidy by colchicine treatment of shoots and preliminary characterisation of induced polyploids in two Miscanthus species. Industrial Crops and Products, 32(2), 88–96.

Hornyák, M., Słomka, A., Sychta, K., Dziurka, M., Kopeć, P., Pastuszak, J., Szczerba, A., & Płażek, A. (2020). Reducing flower competition for assimilates by half results in higher yield of Fagopyrum esculentum. International Journal of Molecular Sciences, 21(23), Article 8953.

Hunold, R., Hartleb, H., & Afanasenko, O. S. (1992). Resistance against Drechslera teres (Sacc.) Shoem. in progenies of in vitro selected callus derived plants of barley (Hordeum vulgare L.). Journal of Phytopathology, 135(2), 89–98.

Hura, K., Rapacz, M., Hura, T., Żur, I., & Filek, M. (2015). The effect of cold on the response of Brassica napus callus tissue to the secondary metabolites of Leptosphaeria maculans. Acta Physiologiae Plantarum, 37(2), Article 13.

Knop, W. (1865). Quantitative untersuchungen über die Ernahrungsprozesse der Pflanzen [Quantitative studies on the nutritional processes of plants]. Die Landwirtschaftlichen Versuchs-Stationen, 7, 93–107.

Kopeć, P. (2017). Wykorzystanie androgenezy, gynogenezy oraz poliploidyzacji do przywracania płodności roślin miskanta olbrzymiego (Miscanthus × giganteus Greef et Deu) [The use of androgenesis, gynogenesis and polyploidization to restore the fertility of giant miscanthus (Miscanthus ×giganteus Greef et Deu) plants] [Unpublished doctoral dissertation]. Hugo Kołłątaj University of Agriculture in Krakow.

Kulczyk-Skrzeszewska, M., Kieliszewska-Rokicka, B., & Bojarczuk, K. (2018). Inoculation of Populus nigra ‘Italica’ and P. × canescens microplants with mycorrhizal fungi increase their tolerance to salt stress. BioTechnologia, 99(3), 257.

Larkin, P. J., & Scowcroft, W. R. (1981). Somaclonal variation – A novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 60(4), 197–214.

Lepoivre, P., Viseur, J., Duhem, K., & Carels, N. (1986). Double-layer culture technique as a tool for the selection of calluses resistant to toxic material from plant pathogenic fungi. In J. Semal (Ed.), Somaclonal variations and crop improvement (pp. 45–52). Springer.

Lewandowski, I. (2006). Miscanthus – A multifunctional biomass crop for the future. In S. Jeżowski, M. K. Wojciechowicz, & E. Zenkteler (Eds.), Alternative plants for sustainable agriculture (pp. 83–90). Institute of Plant Genetics, Polish Academy of Sciences.

Makowski, D., Tomiczak, K., Rybczyński, J. J., & Mikuła, A. (2016). Integration of tissue culture and cryopreservation methods for propagation and conservation of the fern Osmunda regalis L. Acta Physiologiae Plantarum, 38(1), Article 19.

Marcińska, I., Biesaga-Kościelniak, J., & Dubert, F. (1996). Effect of vernalization conditions on growth and differentiation of callus from immature embryos and on generative development of regenerated plants of winter wheat. Acta Physiologiae Plantarum, 1, 12–17.

Marcińska, I., Biesaga-Kościelniak, J., Dubert, F., & Kozdój, J. (1999). Effect of length and developmental stage of spike on the induction and differentiation efficiency of callus tissue in winter wheat. Evidence for generative development of regenerated plants. Acta Physiologiae Plantarum, 21(4), 355–363.

Marcińska, I., Dubert, F., & Biesaga-Kościelniak, J. (1995). Transfer of the ability to flower in winter wheat via callus tissue regenerated from immature inflorescences. Plant Cell & Tissue Organ Culture, 41, 285–288.

Melchers, G., Sacristán, M. D., & Holder, A. A. (1978). Somatic hybrid plants of potato and tomato regenerated from fused protoplasts. Carlsberg Research Communications, 43(4), 203–218.

Melnychuk, O. V., Ozheredov, S., Rakhmetov, D. B., Shysha, O. O., Rakhmetova, S. O., Yemets, A. I., & Blume, Y. B. (2020). Induction of polyploidy in giant miscanthus (Miscanthus × giganteus Greef et Deu.). Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact, and Applied Sciences, 74(3), 206–214.

Mikuła, A., Tomiczak, K., Makowski, D., Niedzielski, M., & Rybczyński, J. J. (2015). The effect of moisture content and temperature on spore aging in Osmunda regalis. Acta Physiologiae Plantarum, 37(11), Article 229.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.

Muszyńska, E., Labudda, M., Różańska, E., Hanus-Fajerska, E., & Znojek, E. (2018). Heavy metal tolerance in contrasting ecotypes of Alyssum montanum. Ecotoxicology and Environmental Safety, 161, 305–317.

Muszyńska, E., Tokarz, K. M., Dziurka, M., Labudda, M., Dziurka, K., & Tokarz, B. (2021). Photosynthetic apparatus efficiency, phenolic acid profiling and pattern of chosen phytohormones in pseudometallophyte Alyssum montanum. Scientific Reports, 11(1), Article 4135.

Patade, V. Y., Suprasanna, P., & Bapat, V. A. (2008). Gamma irradiation of embryogenic callus cultures and in vitro selection for salt tolerance in sugarcane (Saccharum officinarum L.). Agricultural Sciences in China, 7(9), 1147–1152.

Piękoś-Mirkowa, H., & Delimat, A. (2016). Astragalus penduliflorus Lam. In R. Kaźmierczakowa, K. Zarzycki, & Z. Mirek (Eds.), Polska czerwona księga roślin [Polish red book of plants] (3rd ed., pp. 282–283). Institute of Nature Conservation, Polish Academy of Sciences.

Płażek, A. (1994). In vitro selection of Festuca pratensis (Huds.) callus on the metabolites of Drechslera sp. pathogens. In D. Reheul & A. Ghesquiere (Eds.), Proceedings of the 19th Fodder Crops Section Meeting held in Brugge, Belgium, 5–8 October 1994 “Breeding for quality” (pp. 183–184). European Association for Research on Plant Breeding.

Płażek, A. (1997). Ocena odporności wyselekcjonowanych in vitro genotypów kostrzewy łąkowej i ich potomstwa na Bipolaris sorokiniana [Estimating the resistance of selected in vitro meadow fescue genotypes and their progeny to Bipolaris sorokiniana]. Zeszyty Problemowe Postępów Nauk Rolniczych, 451, 57–66.

Płażek, A., & Dubert, F. (2010). Improvement of medium for Miscanthus × giganteus callus induction and plant regeneration. Acta Biologica Cracoviensia, Series Botanica, 52(1), 105–110.

Płażek, A., Dubert, F., Janowiak, F., Krępski, T., & Tatrzańska, M. (2011). Plant age and in vitro or in vivo propagation considerably affect cold tolerance of Miscanthus × giganteus. European Journal of Agronomy, 34(3), 163–171.

Płażek, A., Dubert, F., Kopeć, P., Krępski, T., Kacorzyk, P., Micek, P., Kurowska, M., Szarejko, I., & Żurek, G. (2015). In vitro-propagated Miscanthus × giganteus plants can be a source of diversity in terms of their chemical composition. Biomass and Bioenergy, 75, 142–149.

Płażek, A., Filek, M., & Wędzony, M. (1999). Improvement of regeneration ability in Phleum pratense L. in vitro culture by dicamba. Acta Physiologiae Plantarum, 21(4), 397–403.

Płażek, A., Hura, K., Rapacz, M., & Żur, I. (2000). Współczynnik efektywności metabolicznej jako wskaźnik reakcji tkanki kalusowej i liści jęczmienia na metabolity i zarodniki Bipolaris sorokiniana (Sacc.) Shoem. [Metabolic efficiency coefficient as an indicator of spring barley callus tissue and leaf reaction to metabolites and conidia of Bipolaris sorokiniana (Sacc.) Shoem.]. Zeszyty Problemowe Postępów Nauk Rolniczych, 473, 239–248.

Płażek, A., Hura, K., & Żur, I. (2005). Influence of chitosan, pectinase and fungal metabolites on activation of phenylopropanoid pathway and antioxidant activity in oilseed rape callus. Acta Physiologiae Plantarum, 27(1), 95–102.

Płażek, A., & Niemczyk, E. (2000). Changes in soluble carbohydrate level in Hordeum vulgare (L.) and Festuca pratensis (Huds.) calli treated with metabolites of Bipolaris sorokiniana (Sacc.) Shoem. Acta Physiologiae Plantarum, 22(4), 471–476.

Podleśny, J. (2005). Trawa Miscanthus × giganteus – jej charakterystyka oraz możliwości wykorzystania [Grass Miscanthus × giganteus – Its characteristics and possibility of its use]. Postępy Nauk Rolniczych, 52(2), 41–52.

Raveh, D., Huberman, E., & Galun, E. (1973). In vitro culture of tobacco protoplasts: Use of feeder techniques to support division of cells plated at low densities. In Vitro, 9(3), 216–222.

Rines, H. W., & Luke, H. H. (1985). Selection and regeneration of toxin-insensitive plants from tissue cultures of oats (Avena sativa) susceptible to Helminthosporium victoriae. Theoretical and Applied Genetics, 71(1), 16–21.

Skrzypek, E. (2001). Optimisation of the regeneration abilities of field bean (Vicia faba L. ssp. minor) in in vitro culture. Biological Biulletin of Poznań, 38(1), 87–95.

Szarejko, I., Szurman-Zubrzycka, M., Nawrot, M., Marzec, M., Gruszka, D., Kurowska, M., & Maluszynski, M. (2017). Creation of a TILLING population in barley after chemical mutagenesis with sodium azide and MNU. In J. Jankowicz-Cieslak, T. Tai, J. Kumlehn, & B. Till (Eds.), Biotechnologies for plant mutation breeding (pp. 91–111). Springer.

Wojciechowski, S., Wiśniewska, H., & Chełkowski, J. (1996). Influence of Fusarium culmorum infection and its metabolite deoxynivalenol on membranes stability in barley seedlings. Acta Physiologiae Plantarum, 18(1), 3–6.

Żur, I., Kościelniak, J., Dubert, F., & Płażek, A. (2000). Aktywność metaboliczna jako potencjalny wskaźnik zdolności do różnicowania w kulturach kalusa rzepaku – wpływ egzogennych poliamin [Metabolic activity as a possible indicator of morphogenic potential in rape callus cultures – The effect of polyamines]. Zeszyty Problemowe Nauk Rolniczych, 473, 349–357.

Żur, I., Skoczowski, A., Niemczyk, E., & Dubert, F. (2002). Changes in the composition of fatty acids and sterols of membrane lipids during induction and differentiation of Brassica napus (var. oleifera L.) callus. Acta Physiologiae Plantarum, 24(1), 3–10.


Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Polish Botanical Society