Polish Achievements in Bioactive Compound Production From In Vitro Plant Cultures

Agnieszka Pietrosiuk, Anna Budzianowska, Jaromir Budzianowski, Halina Ekiert, Małgorzata Jeziorek, Anna Kawiak, Małgorzata Kikowska, Mirosława Krauze-Baranowska, Aleksandra Królicka, Łukasz Kuźma, Maria Łuczkiewicz, Janusz Malarz, Adam Matkowski, Anna Stojakowska, Katarzyna Sykłowska-Baranek, Agnieszka Szopa, Wojciech Szypuła, Barbara Thiem, Sylwia Zielińska

Abstract


Plant cell and organ cultures are potential sources of valuable secondary metabolites that can be used as food additives, nutraceuticals, cosmeceuticals, and pharmaceuticals. Phytochemical biosynthesis in various in vitro plant cultures, in contrast to that in planta, is independent of environmental conditions and free from quality fluctuations.

Pharmaceutical application of plant biotechnology is of interest to almost all departments of the Faculty of Pharmacy and Institute of Pharmacology in Poland with a botanical profile (Pharmaceutical Botany, Pharmacognosy, and Pharmacology).

This study discusses the advances in plant biotechnology for the production of known metabolites and/or biosynthesis of novel compounds in plant cell and organ in vitro cultures in several scientific centers in Poland.


Keywords


bioreactors; biotransformation; elicitation; hairy roots; multiple shoots; plant tissue cultures; secondary metabolites; undifferentiated cultures

Full Text:

PDF XML (JATS)

References


Alamgir, A. N. M. (2017). Cultivation of herbal drugs, biotechnology, and in vitro production of secondary metabolites, high-value medicinal plants, herbal wealth, and herbal trade. Therapeutic use of medicinal plants and their extracts. In Therapeutic use of medicinal plants and their extracts (Vol. 1, pp. 379–452). Springer. https://doi.org/10.1007/978-3-319-63862-1_9

Altpeter, F., Springer, N. M., Bartley, L. E., Blechl, A. E., Brutnell, T. P., Citovsky, V., Conrad, L. J., Gelvin, S. B., Jackson, D. P., Kausch, A. P., Lemaux, P. G., Medford, J. I., Orozco-Cárdenas, M. L., Tricoli, D. M., Van Eck, J., Voytas, D. F., Walbot, V., Wang, K., Zhang, Z. J., & Stewart, C. N., Jr. (2016). Advancing crop transformation in the era of genome editing. The Plant Cell, 28, 1510–1520. https://doi.org/10.1105/tpc.16.00196

Bethea, D., Fullmer, B., Syed, S., Seltzer, G., Tiano, J., Rischko, C., Gillespie, L., Brown, D., & Gasparro, F. P. (1999). Psoralen photobiology and photochemotherapy: 50 years of science and medicine. Journal of Dermatological Science, 19(2), 78–88. https://doi.org/10.1016/s0923-1811(98)00064-4

Bohuslavizki, K. H., Hänsel, W., Kneip, A., Koppenhöfer, E., Niemöller, E., & Sanmann, K. (1994). Mode of action of psoralens, bezofurans, acridinons and coumarins on the ionic currents in intact myelinated nerve fibres and its significance in demyelinating diseases. General Physiology and Biophysics, 13(4), 309–328.

Budzianowska, A., Kikowska, M., Małkiewicz, M., Karolak, I., & Budzianowski, J. (2019). Phenylethanoid glycosides in Plantago media L. organs obtained in in vitro cultures. Acta Biologica Cracoviensia, Series Botanica, 61(1), 75–86. https://doi.org/10.24425/118060

Budzianowska, A., Skrzypczak, L., & Budzianowski, J. (2004). Phenylethanoid glucosides from in vitro propagated plants and callus cultures of Plantago lanceolata L. Planta Medica, 70(9), 834–840. https://doi.org/10.1055/s-2004-827232

Budzianowski, J. (1995). Naphthoquinones of Drosera spathulata from in vitro cultures. Phytochemistry, 40(4), 1145–1148. https://doi.org/10.1016/0031-9422(95)00313-V

Budzianowski, J. (1996). Naphthohydroquinone glucosides of Drosera rotundifolia and D. intermedia from in vitro cultures. Phytochemistry, 42, 1145–1147. https://doi.org/10.1016/0031-9422(96)00076-3

Budzianowski, J. (1997). 2-Methylnaphthazarin 5-O-glucoside from the methanolic extracts of in vitro cultures of Drosera species. Phytochemistry, 44(1), 75–77. https://doi.org/10.1016/S0031-9422(96)00520-1

Budzianowski, J. (2000). Naphthoquinone glucosides of Drosera gigantea from in vitro cultures. Planta Medica, 66(7), 667–669. https://doi.org/10.1055/s-2000-8617

Budzianowski, J., Budzianowska, A., & Kromer, K. (2002). Naphthalene glucoside and other phenolics from shoot and callus cultures of Drosophyllum lusitanicum. Phytochemistry, 61(4), 421–425. https://doi.org/10.1016/S0031-9422(02)00258-3

Budzianowski, J., Morozowska, M., & Wesołowska, M. (2005). Lipophilic flavones of Primula veris L. from field cultivation and in vitro culture. Phytochemistry, 66(9), 1033–1039. https://doi.org/10.1016/j.phytochem.2005.03.024

Budzianowski, J., Skrzypczak, L., & Kukułczanka, K. (1993). Phenolic compounds of Drosera intermedia and D. spathulata from in vitro cultures. Acta Horticulturae, 330, 277–280. https://doi.org/10.17660/ActaHortic.1993.330.36

Clebsch, B., & Barner, C. D. (2003). Salvia austriaca Jacquin. In B. Clebsch (Ed.), The new book of salvias. Sages for every garden (pp. 39–40). Timber Press.

Debnath, M., Malik, C. P., & Bisen, P. S. (2006). Micropropagation: A tool for the production of high quality plant-based medicines. Current Pharmaceutical Biotechnology, 7, 33–49. https://doi.org/10.2174/138920106775789638

Derda, M., Thiem, B., Budzianowski, J., Hadaś, E., Wojt, W. J., & Wojtkowiak-Giera, A. (2013). The evaluation of the amebicidal activity of Eryngium planum extracts. Acta Poloniae Pharmaceuticae – Drug Research, 70(6), 1027–1034.

Ekiert, H. (1993). Ammi majus L. (Bishop’s weed): In vitro culture and the production of coumarin compounds. In Y. P. S. Bajaj (Ed.), Medicinal and aromatic plants IV (pp. 1–17). Springer. https://doi.org/10.1007/978-3-642-77004-3_1

Ekiert, H. (2004). Accumulation of biologically active furanocoumarins within in vitro cultures of medicinal plants. In K. G. Ramawat (Ed.), Biotechnology of medicinal plants. Vitalizer and therapeutic (pp. 267–296). Science Publishers.

Ekiert, H., Abou-Mandour, A. A., & Czygan, F. C. (2005). Accumulation of biologically active furanocoumarins in Ruta graveolens ssp. divaricata (Tenore) Gams in vitro culture. Pharmazie, 60(1), 66–68.

Ekiert, H., Chołoniewska, M., & Gomółka, E. (2001). Accumulation of furanocoumarins in Ruta graveolens L. shoot culture. Biotechnology Letters, 23(7), 543–545. https://doi.org/10.1023/A:1010386820799

Ekiert, H., & Czygan, F. C. (2005). Accumulation of biologically active furanocoumarins in agitated cultures of Ruta graveolens L. and Ruta graveolens ssp. divaricata (Tenore) Gams. Pharmazie, 60(8), 623–626.

Ekiert, H., & Czygan, F. C. (2007). Secondary metabolites in in vitro cultures of Ruta graveolens L. and Ruta graveolens ssp. divaricata (Tenore) Gams. In K. G. Ramawat & J. M. Merillon (Eds.), Biotechnology: Secondary metabolites. Plants and microbes (pp. 445–482). Science Publishers. https://doi.org/10.1201/b10756-17

Ekiert, H., & Gomółka, E. (1999). Effect of light on contents of coumarin compounds in shoots of Ruta graveolens L. cultivated in vitro. Acta Societatis Botanicorum Poloniae, 68(3), 197–200. https://doi.org/10.5586/asbp.1999.026

Ekiert, H., & Gomółka, E. (2000a). Coumarin compounds in Ammi majus L. callus culture. Pharmazie, 55(9), 684–687.

Ekiert, H., & Gomółka, E. (2000b). Furanocoumarins in Pastinaca sativa L. in vitro culture. Pharmazie, 55(8), 618–620.

Ekiert, H., & Kisiel, W. (1997). Coumarins and alkaloids in shoot culture of Ruta graveolens L. Acta Societatis Botanicorum Poloniae, 66(3–4), 329–332. https://doi.org/10.5586/asbp.1997.039

Ekiert, H., Turcza, K., Kwiecień, I., & Szopa, A. (2017). Od algologii do biotechnologii – 85 lat działalności Katedry i Zakładu Botaniki Farmaceutycznej w Krakowie. Część III, 1999–2016. Działalność naukowo-badawcza i dydaktyczna związana z biotechnologią roślin leczniczych [From algology to biotechnology – 85 years of activity of the Chair and Department of Pharmaceutical Botany in Krakow. Part III; 1999–2016. Scientific research and teaching related to the biotechnology of medicinal plants]. Farmacja Polska, 73(5), 285–302.

European Medicines Agency. (2013). Cichorii intybi radix. https://www.ema.europa.eu/en/medicines/herbal/cichorii-intybi-radix

Fan, H., Chen, J., Lv, H., Ao, X., Wu, Y., Ren, B., & Li, W. (2017). Isolation and identification of terpenoids from chicory roots and their inhibitory activities against yeast α-glucosidase. European Food Research and Technology, 243, 1009–1017. https://doi.org/10.1007/s00217-016-2810-1

Ferioli, F., & D’Antuono, L. F. (2012). An update procedure for an effective and simultaneous extraction of sesquiterpene lactones and phenolics from chicory. Food Chemistry, 135, 243–250. https://doi.org/10.1016/j.foodchem.2012.04.079

Ferreira, A., Rodrigues, M., Fortuna, A., Falcão, A., & Alves, G. (2016). Huperzine A from Huperzia serrata: A review of its sources, chemistry, pharmacology and toxicology. Phytochemistry Reviews, 15(1), 51–85. https://doi.org/10.1007/s11101-014-9384-y

Fonseca-Santos, B., Antonio Corrêa, M., & Chorilli, M. (2015). Sustainability, natural and organic cosmetics: Consumer, products, efficacy, toxicological and regulatory considerations. Brazilian Journal of Pharmaceutical Sciences, 51(1), 17–26. https://doi.org/10.1590/S1984-82502015000100002

Freeberg, J. A., & Wetmore, R. H. (1957). Gametophytes of Lycopodium as grown in vitro. Phytomorphology, 7, 204–217.

Furmanowa, M., & Sykłowska-Baranek, K. (2000). Hairy root cultures of Taxus × media var. Hicksii Rehd. as a new source of paclitaxel and 10-deacetylbaccatin III. Biotechnology Letters, 22, 683–686. https://doi.org/10.1023/A:1005683619355

Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50, 151–158. https://doi.org/10.1016/0014-4827(68)90403-5

Graikou, K., Damianakos, H., Ganos, C., Sykłowska-Baranek, K., Małgorzata Jeziorek, M., Pietrosiuk, A., Christos Roussakis, C., & Chinou, I. (2021). Chemical profile and screening of bioactive metabolites of Rindera graeca (A. Dc.) Bois. & Heldr. (Boraginaceae) in vitro cultures. Plants, 10(5), Article 834. https://doi.org/10.3390/plants10050834

Gromek, D., Kisiel, W., Kłodzińska, A., & Chojnacka-Wójcik, E. (1992). Biologically active preparations from Lactuca virosa L. Phytotherapy Research, 6, 285–287. https://doi.org/10.1002/ptr.2650060514

Haberlandt, G. (1943). Culturversuche mit isolierten Pfanzenzellen [Cultivation experiments using isolated plant cells]. Planta, 33(4), 576–588. https://doi.org/10.1007/BF01916543

Hao, B.-J., Wu, Y.-H., Wang, J.-G., Hu, S.-Q., Keil, D. J., Hu, H.-J., Lou, J.-D., & Zhao, Y. (2012). Hepatoprotective and antiviral properties of isochlorogenic acid A from Laggera alata against hepatitis B virus infection. Journal of Ethnopharmacology, 144, 190–194. https://doi.org/10.1016/j.jep.2012.09.003

Härmälä, P., Vuorela, H., Hiltunen, R., Nyiredy, S., Törnquist, K., & Kaltia, S. (1992). Strategy for the isolation and identification of coumarins with calcium antagonistic properties from the roots of Angelica archangelica. Phytochemical Analysis, 3(1), 42–48. https://doi.org/10.1002/pca.2800030108

He, G., He, G., Zhou, R., Pi, Z., Zhu, T., Jiang, L., & Xie, Y. (2016). Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo. Biochemical and Biophysical Research Communications, 469(4), 1075–1082. https://doi.org/10.1016/j.bbrc.2015.12.100

Hehmann, M., Lukačin, R., Ekiert, H., & Matern, U. (2004). Furanocoumarin biosynthesis in Ammi majus L. Cloning of bergaptol O-methyltransferase. European Journal of Biochemistry, 271(5), 932–940. https://doi.org/10.1111/j.1432-1033.2004.03995.x

Hussain, M. S., Fareed, S., Ansari, S., Rahman, M. A., Ahmad, I. Z., & Saeed, M. (2012). Current approaches toward production of secondary plant metabolites. Journal of Pharmacy and Bioallied Sciences, 4, 10–20. https://doi.org/10.4103/0975-7406.92725

Jafernik, K., Szopa, A., Barnaś, M., Dziurka, M., & Ekiert, H. (2020). Schisandra henryi C. B. Clarke in vitro cultures: A promising tool for the production of lignans and phenolic compounds. Plant Cell Tissue and Organ Culture, 143, 45–60. https://doi.org/10.1007/s11240-020-01895-2

Jeziorek, M., Damianakos, H., Kawiak, A., Laudy, A. E., Zakrzewska, K., Sykłowska-Baranek, K., Chinou, I., & Pietrosiuk, A. (2019). Bioactive rinderol and cynoglosol isolated from Cynoglossum columnae Ten. in vitro root culture. Industrial Crops & Products, 137, 446–452. https://doi.org/10.1016/j.indcrop.2019.04.046

Jiao, W.-H., Gao, H., Zhao, F., He, F., Zhou, G.-X., & Yao, X.-S. (2011). A new neolignan and a new sesterterpenoid from the stems of Picrasma quassioides Bennet. Chemistry & Biodiversity, 8, 1163–1169.

Karuppusamy, S. (2009). A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. Journal of Medicinal Plants Research, 3(13), 1222–1239.

Kawiak, A., Domachowska, A., Krolicka, A., Smolarska, M., & Lojkowska, E. (2019). 3-Chloroplumbagin induces cell death in breast cancer cells through MAPK-mediated Mcl-1 inhibition. Frontiers in Pharmacology, 10, Article 784. https://doi.org/10.3389/fphar.2019.00784

Kawiak, A., Domachowska, A., & Lojkowska, E. (2019). Plumbagin increases paclitaxel-induced cell death and overcomes paclitaxel resistance in breast cancer cells through ERK-mediated apoptosis induction. Journal of Natural Products, 82, 878–885. https://doi.org/10.1021/acs.jnatprod.8b00964

Kawiak, A., Krolicka, A., & Lojkowska, E. (2003). Direct regeneration of Drosera from leaf explants and shoot tips. Plant Cell Tissue and Organ Culture, 75, 175–178. https://doi.org/10.1023/A:1025023800304

Kawiak, A., Królicka, A., & Łojkowska, E. (2011). In vitro cultures of Drosera aliciae as a source of a cytotoxic naphthoquinone: ramentaceone. Biotechnology Letters, 33, Article 2309. https://doi.org/10.1007/s10529-011-0700-y

Kawiak, A., Piosik, J., Stasilojc, G., Gwizdek-Wisniewska, A., Marczak, L., Stobiecki, M., & Lojkowska, E. (2007). Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoisomerase II. Toxicology and Applied Pharmacology, 223, 267–276. https://doi.org/10.1016/j.taap.2007.05.018

Kawiak, A., Zawacka-Pankau, J., Wasilewska, A., Stasilojc, G., Bigda, J., & Lojkowska, E. (2012). Induction of apoptosis in HL-60 cells through the ROS-mediated mitochondrial pathway by ramentaceone from Drosera aliciae. Journal of Natural Products, 75, 9–14. https://doi.org/10.1021/np200247g

Kikowska, M. (2014). Krajowe gatunki rodzaju Eryngium L. w kulturze in vitro – mikrorozmnażanie, kultury organów, ocena fitochemiczna i aktywność biologiczna [In vitro cultures of Polish Eryngium L. species – Micropropagation, organ cultures, phytochemical investigation and biological activity] [Doctoral dissertation, Poznan University of Medical Sciences]. Digital Library of Wielkopolska. https://www.wbc.poznan.pl/publication/411082

Kikowska, M., Budzianowski, J., Krawczyk, A., & Thiem, B. (2012). Accumulation of rosmarinic, chlorogenic and caffeic acid in in vitro of Eryngium planum L. Acta Physiologiae Plantarum, 34, 2425–2433. https://doi.org/10.1007/s11738-012-1011-1

Kikowska, M., Długaszewska, J., Kubicka, M. M., Kędziora, I., Budzianowski, J., & Thiem, B. (2016). In vitro antimicrobial activity of extracts and their fractions from three Eryngium L. species. Herba Polonica, 62(2), 67–77. https://doi.org/10.1515/hepo-2016-0012

Kikowska, M., Kędziora, I., Krawczyk, A., & Thiem, B. (2015). Methyl jasmonate, yeast extract and sucrose stimulate phenolic acid accumulation in Eryngium planum L. shoot cultures. Acta Biochimica Polonica, 62(2), 197–200. https://doi.org/10.18388/abp.2014_880

Kikowska, M., Kowalczyk, M., Stochmal, A., & Thiem, B. (2019). Enhanced accumulation of triterpenoid saponins in in vitro plantlets and dedifferentiated cultures of Eryngium planum L.: A medicinal plant. Horticulture, Environment, and Biotechnology, 60, 147–154. https://doi.org/10.1007/s13580-018-0103-2

Kikowska, M. A., Chmielewska, M., Włodarczyk, A., Studzińska-Sroka, E., Żuchowski, J., Stochmal, A., Kotwicka, M., & Thiem, B. (2018). Effect of pentacyclic triterpenoids-rich callus extract of Chaenomeles japonica (Thunb.) Lindl. ex Spach on viability, morphology, and proliferation of normal human skin fibroblasts. Molecules, 23, Article 3009. https://doi.org/10.3390/molecules23113009

Kisiel, W., Stojakowska, A., Malarz, J., & Kohlmünzer, S. (1995). Sesquiterpene lactones in Agrobacterium rhizogenes-transformed hairy root culture of Lactuca virosa. Phytochemistry, 40, 1139–1140. https://doi.org/10.1016/0031-9422(95)00433-8

Kokotkiewicz, A., Luczkiewicz, M., Kowalski, W., Badura, A., Piekus, N., & Bucinski, A. (2013). Isoflavone production in Cyclopia subternata Vogel (honeybush) suspension cultures grown in shake flasks and stirred-tank bioreactor. Applied Microbiology and Biotechnology, 97, 8467–8477. https://doi.org/10.1007/s00253-013-5099-z

Kokotkiewicz, A., Luczkiewicz, M., Pawlowska, J., Luczkiewicz, P., Sowinski, P., Witkowski, J., Bryl, E., & Bucinski, A. (2013). Isolation of xanthone and benzophenone derivatives from Cyclopia genistoides (L.) Vent. (honeybush) and their pro-apoptotic activity on synoviocytes from patients with rheumatoid arthritis. Fitoterapia, 90, 199–208. https://doi.org/10.1016/j.fitote.2013.07.020

Kokotkiewicz, A., Wnuk, M., Bucinski, A., & Luczkiewicz, M. (2009). In vitro cultures of Cyclopia plants (honeybush) as a source of bioactive xanthones and flavanones. Zeitschrift für Naturforschung C, 64, 533–540. https://doi.org/10.1515/znc-2009-7-812

Kowalczyk, M., Masullo, M., Thiem, B., Piacente, S., Stochmal, A., & Oleszek, W. (2014). Three new triterpene saponins from roots of Eryngium planum. Natural Product Research, 28(9), 653–660. https://doi.org/10.1080/14786419.2014.895722

Krolicka, A., Szpitter, A., Gilgenast, E., Romanik, G., Kaminski, M., & Lojkowska, E. (2008). Stimulation of antibacterial naphthoquinones and flavonoids accumulation in carnivorous plants by addition of elicitors. Enzyme and Microbial Technology, 42, 216–221. https://doi.org/10.1016/j.enzmictec.2007.09.011

Krolicka, A., Szpitter, A., Maciag, M., Biskup, E., Gilgenast, E., Romanik, G., Kaminski, M., Wegrzyn, G., & Lojkowska, E. (2009). Antibacterial and antioxidant activity of the secondary metabolites from in vitro cultures of Drosera aliciae. Biotechnology and Applied Biochemistry, 53(3), 175–184. https://doi.org/10.1042/BA20080088

Krolicka, A., Szpitter, A., Stawujak, K., Baranski, R., Gwizdek-Wisniewska, A., Skrzypczak, A., Kaminski, M., & Lojkowska, E. (2010). Teratomas of Drosera capensis var. alba as a source of naphthoquinone: ramentaceone. Plant Cell Tissue and Organ Culture, 103, 285–292. https://doi.org/10.1007/s11240-010-9778-5

Królicka, A., Staniszewska, I., Bielawski, K., Maliński, E., Szafranek, J., & Łojkowska, E. (2001). Establishment of hairy root cultures of Ammi majus. Plant Science, 160, 259–264. https://doi.org/10.1016/S0168-9452(00)00381-2

Krychowiak, M., Kawiak, A., Narajczyk, M., Borowik, A., & Królicka, A. (2018). Silver nanoparticles combined with naphthoquinones as an effective synergistic strategy against Staphylococcus aureus. Frontiers in Pharmacology, 9, Article 816. https://doi.org/10.3389/fphar.2018.00816

Krychowiak-Maśnicka, M., Krauze-Baranowska, M., Godlewska, S., Kaczyński, Z., Bielicka-Giełdoń, A., Grzegorczyk, N., Narajczyk, M., Frackowiak, J. E., & Krolicka, A. (2021). Potential of silver nanoparticles in overcoming the intrinsic resistance of Pseudomonas aeruginosa to secondary metabolites from carnivorous plants. International Journal of Molecular Sciences, 22, Article 4849. https://doi.org/10.3390/ijms22094849

Kukułczanka, K., & Budzianowski, J. (2002). Dionaea muscipula Ellis (Venus fly-trap): In vitro culture and production of secondary metabolites. In T. Nagata & Y. Ebizuka (Eds.), Medicinal and aromatic plants XII (pp. 50–74). Springer. https://doi.org/10.1007/978-3-662-08616-2_4

Kuźma, Ł., Bruchajzer, E., & Wysokińska, H. (2008). Diterpenoid production in hairy root culture of Salvia sclarea L. Zeitschrift für Naturforschung C, 63, 621–624. https://doi.org/10.1515/znc-2008-7-827

Kuźma, Ł., Bruchajzer, E., & Wysokińska, H. (2009). Methyl jasmonate effect on diterpenoid accumulation in Salvia sclarea hairy root culture in shake flasks and sprinkle bioreactor. Enzyme and Microbial Technology, 44, 406–410. https://doi.org/10.1016/j.enzmictec.2009.01.005

Kuźma, Ł., Kaiser, M., & Wysokińska, H. (2017). The production and antiprotozoal activity of abietane diterpenes in Salvia austriaca hairy roots grown in shake flasks and bioreactor. Preparative Biochemistry & Biotechnology, 47, 58–66. https://doi.org/10.1080/10826068.2016.1168745

Kuźma, Ł., Kisiel, W., Królicka, A., & Wysokińska, H. (2011). Genetic transformation of Salvia austriaca by Agrobacterium rhizogenes and diterpenoid isolation. Die Pharmazie, 66, 904–907. https://doi.org/10.1691/ph.2011.1586

Kuźma, Ł., Różalski, M., Walencka, E., Różalska, B., & Wysokińska, H. (2007). Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: Salvipisone as a potential anti-biofilm agent active against antibiotic resistant staphylococci. Phytomedicine, 14, 31–35. https://doi.org/10.1016/j.phymed.2005.10.008

Kuźma, Ł., Skrzypek, Z., & Wysokińska, H. (2006). Diterpenoids and triterpenoids in hairy roots of Salvia sclarea. Plant Cell, Tissue and Organ Culture, 84, 171–179. https://doi.org/10.1007/s11240-005-9018-6

Kuźma, Ł., Wysokińska, H., Różalski, M., Budzyńska, A., Więckowska-Szakiel, M., Sadowska, B., Paszkiewicz, M., Kisiel, W., & Różalska, B. (2012). Antimicrobial and anti-biofilm properties of new taxodione derivative from hairy roots of Salvia austriaca. Phytomedicine, 19, 1285–1287. https://doi.org/10.1016/j.phymed.2012.07.016

Kuźma, Ł., Wysokińska, H., Różalski, M., Krajewska, U., & Kisiel, W. (2012). An unusual taxodione derivative from hairy roots of Salvia austriaca. Fitoterapia, 83, 770–773. https://doi.org/10.1016/j.fitote.2012.03.006

Kwon, S.-H., Lee, H.-K., Kim, J.-A., Hong, S.-I., Kim, H.-C., Jo, T.-H., Park, Y.-I., Lee, C.-K., Kim, Y.-B., Lee, S.-Y., & Jang, C.-G. (2010). Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. European Journal of Pharmacology, 649, 210–217. https://doi.org/10.1016/j.ejphar.2010.09.001

Luczkiewicz, M., & Kokotkiewicz, A. (2012). Elicitation and permeabilization affect the accumulation and storage profile of phytoestrogens in high productive suspension cultures of Genista tinctoria. Acta Physiologiae Plantarum, 34, 1–16. https://doi.org/10.1007/s11738-011-0799-4

Luczkiewicz, M., Kokotkiewicz, A., & Glod, D. (2014). Plant growth regulators affect biosynthesis and accumulation profile of isoflavone phytoestrogens in high-productive in vitro cultures of Genista tinctoria. Plant Cell Tissue and Organ Culture, 118, 419–429. https://doi.org/10.1007/s11240-014-0494-4

Łuczkiewicz, M., & Głód, D. (2003). Callus cultures of Genista plants – In vitro material producing high amounts of isoflavones of phytoestrogenic activity. Plant Science, 165, 1101–1108. https://doi.org/10.1016/S0168-9452(03)00305-4

Łuczkiewicz, M., & Głód, D. (2005). Morphogenesis-dependent accumulation of phytoestrogens in Genista tinctoria in vitro cultures. Plant Science, 168, 967–979. https://doi.org/10.1016/j.plantsci.2004.11.008

Łuczkiewicz, M., & Kokotkiewicz, A. (2005a). Co-cultures of shoots and hairy roots of Genista tinctoria L. for synthesis and biotransformation of large amounts of phytoestrogens. Plant Science, 169, 862–871. https://doi.org/10.1016/j.plantsci.2005.06.005

Łuczkiewicz, M., & Kokotkiewicz, A. (2005b). Genista tinctoria hairy root cultures for selective production of isoliquiritigenin. Zeitschrift für Naturforschung C, 60, 867–875. https://doi.org/10.1515/znc-2005-11-1209

Ma, X., & Gang, D. R. (2004). The Lycopodium alkaloids. Natural Product Reports, 21, 752–772. https://doi.org/10.1039/b409720n

Makowski, W., Królicka, A., Nowicka, A., Zwyrtková, J., Tokarz, B., Pecinka, A., Banasiuk, R., & Tokarz, K. (2021). Transformed tissue of Dionaea muscipula J. Ellis as a source of biologically active phenolic compounds with bactericidal properties. Applied Microbiology and Biotechnology, 105, 1215–1226. https://doi.org/10.1007/s00253-021-11101-8

Malarz, J., Stojakowska, A., & Kisiel, W. (2002). Sesquiterpene lactones in a hairy root culture of Cichorium intybus. Zeitschrift für Naturforschung C, 57, 994–997. https://doi.org/10.1515/znc-2002-11-1207

Malarz, J., Stojakowska, A., & Kisiel, W. (2007). Effect of methyl jasmonate and salicylic acid on sesquiterpene lactone accumulation in hairy roots of Cichorium intybus. Acta Physiologiae Plantarum, 29, 127–132. https://doi.org/10.1007/s11738-006-0016-z

Malarz, J., Stojakowska, A., & Kisiel, W. (2013). Long-term cultured hairy roots of chicory – A rich source of hydroxycinnamates and 8-deoxylactucin glucoside. Applied Biochemistry and Biotechnology, 171, 1589–1601. https://doi.org/10.1007/s12010-013-0446-1

Malarz, J., Stojakowska, A., Szneler, E., & Kisiel, W. (2005). Furofuran lignans from a callus culture of Cichorium intybus. Plant Cell Reports, 24, 246–249. https://doi.org/10.1007/s00299-005-0953-9

Malarz, J., Stojakowska, A., Szneler, E., & Kisiel, W. (2013). A new neolignane glucoside from hairy roots of Cichorium intybus. Phytochemistry Letters, 6, 59–61. https://doi.org/10.1016/j.phytol.2012.10.011

Matern, U. (1999). Medicinal potential and biosynthesis of plant coumarins. In J. T. Romeo (Ed.), Phytochemicals in human health protection, nutrition and plant defense (pp. 161–183). Springer. https://doi.org/10.1007/978-1-4615-4689-4_7

Michalak, A. M. (2021). Kultury in vitro i in vivo roślin z gatunku Iris pseudacorus źródłem związków biologicznie czynnych [In vitro and in vivo cultures of Iris pseudacorus plants as a source of biologically active compounds] [Unpublished doctoral dissertation]. University of Gdańsk.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiology, 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Muszyński, J. (1955). Alkaloidy i glikozydy flawonowe widłaków [Alkaloids and flavone glycosides of Lycopodium genus]. Acta Societatis Botaniucorum Poloniae, 24(2), 237–244. https://doi.org/10.5586/asbp.1955.014

Nagy, G., Günther, G., Máthé, I., Blunden, G., Yang, M., & Crabb, T. A. (1999). Diterpenoids from Salvia glutinosa, S. austriaca, S. tomentosa and S. verticillata roots. Phytochemistry, 52, 1105–1109. https://doi.org/10.1016/S0031-9422(99)00343-X

Naveed, M., Hejazic, V., Abbasa, M., Kambohd, A. A., Khane, G. J., Shumzaidf, M., Ahmadg, F., Babazadehh, D., Xia, F. F., Modarresi-Ghazanij, F., Li, W. H., & Zhou, X. H. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine & Pharmacotherapy, 97, 67–74. https://doi.org/10.1016/j.biopha.2017.10.064

Ohnishi, M., Morishita, H., Iwahashi, H., Toda, S., Shirataki, Y., Kimura, M., & Kido, R. (1994). Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis. Phytochemistry, 36, 579–583. https://doi.org/10.1016/S0031-9422(00)89778-2

Oksman-Caldentey, K.-M., & Inzé, D. (2004). Plant cell factories in the post-genomic era: New ways to produce designer secondary metabolites. Trends in Plant Science, 9(9), 433–440. https://doi.org/10.1016/j.tplants.2004.07.006

Olmos, A., Giner, R. M., Recio, M. C., Rios, J. L., Gil-Benso, R., & Máñez, S. (2008). Interaction of dicaffeoylquinic derivatives with peroxynitrite and other reactive nitrogen species. Archives of Biochemistry and Biophysics, 475, 66–71. https://doi.org/10.1016/j.abb.2008.04.012

Ożarowski, M., Thiem, B., Mikołajczak, P. L., Piasecka, A., Kachlicki, P., Szulc, M., Kaminska, E., Bogacz, A., Kujawski, R., Bartkowiak-Wieczorek, J., Kujawska, M., Jodynis-Libert, J., Budzianowski, J., Kędziora, I., Seremak-Mrozikiewicz, A., Czerny, B., & Bobkiewicz-Kozłowska, T. (2015). Improvement in long-term memory following chronic administration of Eryngium planum root extract in scopolamine model: Behavioral and molecular study. Evidence-Based Complementary and Alternative Medicine, 2015, Article 145140. https://doi.org/10.1155/2015/145140

Pakulski, G., & Budzianowski, J. (1996a). Ellagic acid derivatives and naphthoquinones of Dionaea muscipula from in vitro cultures. Phytochemistry, 41(3), 775–778. https://doi.org/10.1016/0031-9422(96)89675-0

Pakulski, G., & Budzianowski, J. (1996b). Quercetin and kaempferol glycosides of Dionaea muscipula from in vitro cultures. Planta Medica, 62(1), 95–96. https://doi.org/10.1055/s-2006-957824

Papageorgiou, V. P., Assimopoulou, A. N., & Ballis, A. C. (2008). Alkannins and shikonins: A new class of wound healing agents. Current Medicinal Chemistry, 15(30), 3248–3267. https://doi.org/10.2174/092986708786848532

Papageorgiou, V. P., Assimopoulou, A. N., Couladouros, E. A., Hepworth, D., & Nicolaou, K. C. (1999). The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angewandte Chemie International Edition, 38, 270–300. https://doi.org/d3swjs

Papageorgiou, V. P., Assimopoulou, A. N., Samanidou, V. F., & Papadoyannis, I. N. (2006). Recent advances in chemistry, biology and biotechnology of alkannins and shikonins. Current Organic Chemistry, 10(16), 2123–2142. https://doi.org/10.2174/138527206778742704

Pietrosiuk, A., Sykłowska-Baranek, K., Wiedenfeld, H., Wolinowska, R., Furmanowa, M., & Jaroszyk, E. (2006). The shikonin derivatives and pyrrolizidine alkaloids in hairy root cultures of Lithospermum canescens (Michx.) Lehm. Plant Cell Reports, 25, 1052–1058. https://doi.org/10.1007/s00299-006-0161-2

Robinson, W. E., Jr., Reinecke, M. G., Abdel-Malek, S., Jia, Q., & Chow, S. A. (1996). Inhibitors of HIV-1 replication that inhibit HIV integrase. Proceedings of the National Academy of Sciences of the United States of America, 93, 6326–6331. https://doi.org/10.1073/pnas.93.13.6326

Różalski, M., Kuźma, Ł., Krajewska, U., & Wysokińska, H. (2006). Cytotoxic and proapoptotic activity of diterpenoids from in vitro cultivated Salvia sclarea roots. Studies on the leukemia cell lines. Zeitschrift für Naturforschung C, 61, 483–488. https://doi.org/10.1515/znc-2006-7-804

Schlauer, J., Budzianowski, J., Kukułczanka, K., & Ratajczak, L. (1994). Acteoside and related phenylethanoid glycosides from Byblis liniflora Salisb. plants propagated in vitro culture and its systematic significance. Acta Societatis Botanicorum Poloniae, 73(1), 9–15. https://doi.org/10.5586/asbp.2004.002

Sidwa-Gorycka, M., Krolicka, A., Kozyra, M., Głowniak, K., Bourgaud, F., & Łojkowska, E. (2003). Establishment of a co-culture of Ammi majus and Ruta graveolens for synthesis of furanocoumarins. Plant Science, 165, 1315–1319. https://doi.org/10.1016/S0168-9452(03)00343-1

Sparzak, B., Krauze-Baranowska, M., Kawiak, A., & Sowiński, P. (2015). Cytotoxic lignan from the non-transformed root culture of Phyllanthus amarus. Molecules, 20, 7915–7924. https://doi.org/10.3390/molecules20057915

Staniszewska, I., Królicka, A., Maliński, E., Łojkowska, E., & Szafranek, J. (2003). Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme and Microbial Technology, 33, 565–568. https://doi.org/10.1016/S0141-0229(03)00180-7

Stojakowska, A., & Kisiel, W. (2000). Neolignan glycosides from a cell suspension culture of Lactuca virosa. Polish Journal of Chemistry, 74, 153–155.

Stojakowska, A., & Malarz, J. (2000). Flavonoid production in transformed root cultures of Scutellaria baicalensis. Journal of Plant Physiology, 156, 121–125. https://doi.org/10.1016/S0176-1617(00)80282-5

Stojakowska, A., & Malarz, J. (2017). Bioactive phenolics from in vitro cultures of Lactuca aculeata Boiss. et Kotschy. Phytochemistry Letters, 19, 7–11. https://doi.org/10.1016/j.phytol.2016.11.003

Stojakowska, A., Malarz, J., & Kisiel, W. (2000). Lactuca virosa L. (bitter lettuce): In vitro culture and production of sesquiterpene lactones. In Y. P. S. Bajaj (Ed.), Medicinal and aromatic plants XI (pp. 261–273). Springer. https://doi.org/10.1007/978-3-662-08614-8_15

Stojakowska, A., Malarz, J., & Kisiel, W. (2001). Flavonoid aglycones from transformed root culture of Scutellaria baicalensis. Polish Journal of Chemistry, 75, 1935–1937.

Stojakowska, A., Malarz, J., Szewczyk, A., & Kisiel, W. (2012). Caffeic acid derivatives from a hairy root culture of Lactuca virosa. Acta Physiologiae Plantarum, 34, 291–298. https://doi.org/10.1007/s11738-011-0827-4

Syklowska-Baranek, K., Pietrosiuk, A., Kokoszka, A., & Furmanowa, M. (2009). Enhancement of taxane production in hairy root culture of Taxus × media var. Hicksii. Journal of Plant Physiology, 166, 1950–1954. https://doi.org/10.1016/j.jplph.2009.05.001

Sykłowska-Baranek, K., Grech-Baran, M., Naliwajski, M. R., Bonfill, M., & Pietrosiuk, A. (2015). Paclitaxel production and PAL activity in hairy root cultures of Taxus × media var. Hicksii carrying a taxadiene synthase transgene elicited with nitric oxide and methyl jasmonate. Acta Physiologiae Planarum, 37, Article 2018. https://doi.org/10.1007/s11738-015-1949-x

Sykłowska-Baranek, K., Pietrosiuk, A., Kuźma, Ł., Chinou, I., Kongel, M., & Jeziorek, M. (2008). Establishment of Rindera graeca transgenic root culture as a source of shikonin derivatives. Planta Medica, 74, Article PG54. https://doi.org/10.1055/s-0028-1084806

Sykłowska-Baranek, K., Pietrosiuk, A., Szyszko, E., Graikou, K., Jeziorek, M., Kuźma, Ł., & Chinou, I. (2012). Phenolic compounds from in vitro cultures of Rindera graeca Boiss. & Heldr. Planta Medica, 78, Article PI342. https://doi.org/10.1055/s-0032-1321029

Sykłowska-Baranek, K., Pilarek, M., Bonfill, M., Kafel, K., & Pietrosiuk, A. (2015). Perfluorodecalin-supported system enhances taxane production in hairy root cultures of Taxus × media var. Hicksii carrying a taxadiene synthase transgene. Plant Cell and Tissue Organ Culture, 120, 1051–1059. https://doi.org/10.1007/s11240-014-0659-1

Sykłowska-Baranek, K., Rymaszewski, W., Gaweł, M., Rokicki, P., Pilarek, M., Grech-Baran, M., Hennig, J., & Pietrosiuk, A. (2019). Comparison of elicitor-based effects on metabolic responses of Taxus × media hairy roots in perfluorodecalin-supported two-phase culture system. Plant Cell Reports, 38, 85–99. https://doi.org/10.1007/s00299-018-2351-0

Szopa, A., Barnaś, M., & Ekiert, H. (2019). Phytochemical studies and biological activity of three Chinese Schisandra species (Schisandra sphenanthera, Schisandra henryi and Schisandra rubriflora): Current findings and future applications. Phytochemistry Reviews, 18, 109–128. https://doi.org/10.1007/s11101-018-9582-0

Szopa, A., Dziurka, M., Warzecha, A., Kubica, P., Klimek-Szczykutowicz, M., & Ekiert, H. (2018). Targeted lignan profiling and anti-inflammatory properties of Schisandra rubriflora and Schisandra chinensis extracts. Molecules, 23, Article 3103. https://doi.org/10.3390/molecules23123103

Szopa, A., & Ekiert, H. (2011). Lignans in Schisandra chinensis in vitro cultures. Pharmazie, 66, 633–634.

Szopa, A., & Ekiert, H. (2014). Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) in vitro cultures. In J. Govil & P. Ananda Kumar (Eds.), Biotechnology and genetic engineering II (pp. 405–434). Studium Press.

Szopa, A., Ekiert, R., & Ekiert, H. (2017). Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: A review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochemistry Reviews, 16, 195–218. https://doi.org/10.1007/s11101-016-9470-4

Szopa, A., Klimek, M., & Ekiert, H. (2016). Chinese magnolia vine (Schisandra chinensis) – Therapeutic and cosmetic importance. Polish Journal of Cosmetology, 19, 274–284.

Szopa, A., Klimek-Szczykutowicz, M., Kokotkiewicz, A., Maślanka, A., Król, A., Luczkiewicz, M., & Ekiert, H. (2018). Phytochemical and biotechnological studies on Schisandra chinensis cultivar Sadova No. 1 – A high utility medicinal plant. Applied Microbiology and Biotechnolgy, 102, 5105–5120. https://doi.org/10.1007/s00253-018-8981-x

Szopa, A., Kokotkiewicz, A., Klimek-Szczykutowicz, M., & Luczkiewicz, M. (2019). Different types of in vitro cultures of Schisandra chinensis and its cultivar (S. chinensis cv. Sadova): A rich potential source of specific lignans and phenolic compounds. In K. Ramawat, H. Ekiert, & S. Goyal (Eds.), Plant cell and tissue differentiation and secondary metabolites (pp. 1–28). Springer. https://doi.org/10.1007/978-3-030-30185-9_10

Szopa, A., Kokotkiewicz, A., Luczkiewicz, M., & Ekiert, H. (2017). Schisandra lignans production regulated by different bioreactor type. Journal of Biotechnology, 247, 11–17. https:/doi.org/10.1016/j.jbiotec.2017.02.007

Szopa, A., Kokotkiewicz, A., Marzec-Wróblewska, U., Bucinski, A., Luczkiewicz, M., & Ekiert, H. (2016). Accumulation of dibenzocyclooctadiene lignans in agar cultures and in stationary and agitated liquid cultures of Schisandra chinensis (Turcz.) Baill. Applied Microbiology and Biotechnolgy, 100, 3965–3977. https://doi.org/10.1007/s00253-015-7230-9

Szypuła, W., Pietrosiuk, A., Suchocki, P., Olszowska, O., Furmanowa, M., & Kazimierska, O. (2005). Somatic embryogenesis and in vitro culture of Huperzia selago shoots as a potential source of huperzine A. Plant Science, 168, 1443–1452. https://doi.org/10.1016/j.plantsci.2004.12.021

Szypuła, W. J., Kiss, A. K., Pietrosiuk, A., Świst, M., Danikiewicz, W., & Olszowska, O. (2011). Determination of huperzine A in Huperzia selago plants from wild population and obtained in in vitro culture by high performance liquid chromatography using a chaotropic mobile phase. Acta Chromatogrphica, 23(2), 339–352. https://doi.org/10.1556/AChrom.23.2011.2.11

Szypuła, W. J., Mistrzak, P., & Olszowska, O. (2013). A new and fast method to obtain in vitro cultures of Huperzia selago (Huperziaceae) sporophytes, a club moss which is a source of Huperzine A. Acta Societatis Botanicorum Poloniae, 82, 313–320. https://doi.org/10.5586/asbp.2013.034

Szypuła, W. J., & Pietrosiuk, A. (2021). Production of cholinesterase-inhibiting compounds in in vitro cultures of club mosses. In K. G. Ramawat, H. M. Ekiert, & S. Goyal (Eds.), Plant cell and tissue differentiation and secondary metabolites (pp. 921–960). Springer. https://doi.org/10.1007/978-3-030-30185-9_30

Szypuła, W. J., Wileńska, B., Misicka, A., & Pietrosiuk, A. (2020). Huperzine A and huperzine B production by prothallus cultures of Huperzia selago (L.) Bernh. ex Schrank et Mart. Molecules, 25, Article 3262. https://doi.org/10.3390/molecules25143262u

Tamaki, H., Robinson, R. W., Anderson, J. L., & Stoewsand, G. S. (1995). Sesquiterpene lactones in virus-resistant lettuce. Journal of Agricultural and Food Chemistry, 43, 6–8. https://doi.org/10.1021/jf00049a002

Thiem, B., Kikowska, M., Krawczyk, A., Więckowska, B., & Sliwińska, E. (2013). Phenolic acid and DNA contents of micropropagated Eryngium planum L. Plant Cell and Tissue Organ Culture, 114(2), 197–206. https://doi.org/10.1007/s11240-013-0315-1

Thorpe, T. A. (2007). History of plant tissue culture. Molecular Biotechnology, 37(2), 169–180. https://doi.org/10.1007/s12033-007-0031-3

Toton, E., Kedziora, I., Romaniuk-Drapala, A., Konieczna, N., Kaczmarek, M., Lisiak, N., Paszel-Jaworska, A., Rybska, A., Duszynska, W., Budzianowski, J., Rybczynska, M., & Rubis, B. (2020). Effect of 3-O-acetylaleuritolic acid from in vitro-cultured Drosera spatulata on cancer cells survival and migration. Pharmacological Reports, 72(1), 166–178. https://doi.org/10.1007/s43440-019-00008-x

Toton, E., Lisiak, N., Rubis, B., Budzianowski, J., Gruber, P., Hofmann, J., & Rybczynska, M. (2012). The tetramethoxyflavone zapotin selectively activates protein kinase C epsilon, leading to its down-modulation accompanied by Bcl-2, c-Jun and c-Fos decrease. European Journal of Pharmacology, 682, 21–28. https://doi.org/10.1016/j.ejphar.2012.02.020

Toton, E., Romaniuk, A., Budzianowski, J., Hofmann, J., & Rybczynska, M. (2016). Zapotin (5,6,2',6'-tetramethoxyflavone) modulates the crosstalk between autophagy and apoptosis pathways in cancer cells with overexpressed constitutively active PKC. Nutrition and Cancer, 68(2), 290–304. https://doi.org/10.1080/01635581.2016.1134595

Walencka, E., Rozalska, S., Wysokinska, H., Rozalski, M., Kuzma, Ł., & Rozalska, B. (2007). Salvipisone and aethiopinone from Salvia sclarea hairy roots modulate staphylococcal antibiotic resistance and express anti-biofilm activity. Planta Medica, 73, 545–551. https://doi.org/10.1055/s-2007-967179

Wang, Y., Zhou, Y., Jia, G., Han, B., Liu, J., Teng, Y., Lv, J., Song, Z., Li, Y., Ji, L., Pan, S., Jiang, H., & Sun, B. (2014). Shikonin suppresses tumor growth and synergizes with gemcitabine in a pancreatic cancer xenograft model: Involvement of NF-κB signaling pathway. Biochemical Pharmacology, 88(3), 322–333. https://doi.org/10.1016/j.bcp.2014.01.041

Wesołowska, A., Nikiforuk, A., Michalska, K., Kisiel, W., & Chojnacka-Wójcik, E. (2006). Analgesic and sedative activities of lactucin and some lactucin-like guaianolides in mice. Journal of Ethnopharmacology, 107, 254–258. https://doi.org/10.1016/j.jep.2006.03.003

Whittier, D. P., & Storchova, H. (2007). The gametophyte of Huperzia selago in culture. American Fern Journal, 97(3), 149–154. https://doi.org/crphdd

Wilczańska-Barska, A., Krauze-Baranowska, M., Majdan, M., & Głód, D. (2011). Wild type root cultures of Scutellaria barbata. BioTechnologia, 92, 369–377. https://doi.org/10.5114/bta.2011.46554

Wilczańska-Barska, A., Królicka, A., Głód, D., Majdan, M., Kawiak, A., & Krauze-Baranowska, M. (2012). Enhanced accumulation of secondary metabolites in hairy root cultures of Scutellaria lateriflora following elicitation. Biotechnology Letters, 34, 1757–1763. https://doi.org/10.1007/s10529-012-0963-y

Wolf, P. (2016). Psoralen-ultraviolet A endures as one of the most powerful treatments in dermatology: Reinforcement of this “triple-product therapy” by the 2016 British guidelines. British Journal of Dermatology, 174, 11–14. https://doi.org/10.1111/bjd.14341

Woo, K. W., Suh, W. S., Subedi, L., Kim, S. Y., Kim, A., & Lee, K. R. (2016). Bioactive lignan derivatives from the stems of Firmiana simplex. Bioorganic and Medicinal Chemistry Letters, 26, 730–733. https://doi.org/10.1016/j.bmcl.2016.01.008

World Health Organization. (2007). WHO monographs on selected medicinal plants (Vol. 3). World Health Organization. https://apps.who.int/iris/handle/10665/42052

Yared, J. A., & Tkaczuk, K. H. R. (2012). Update on taxane development: New analogs and new formulations. Drug Design, Development and Therapy, 6, 371–384. https://doi.org/10.2147/DDDT.S28997

Zálešák, F., Bon, D. J.-Y. D., & Pospíšil, J. (2019). Lignans and noelignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacological Research, 146, Article 104284. https://doi.org/10.1016/j.phrs.2019.104284

Zhao, Q., Kretschmer, N., Bauer, R., & Efferth, T. (2015). Shikonin and its derivatives inhibit the epidermal growth factor receptor signaling and synergistically kill glioblastoma cells in combination with erlotinib. International Journal of Cancer, 137(6), 1446–1456. https://doi.org/10.1002/ijc.29483

Zhu, J.-Y., Cheng, B., Zheng, Y.-J., Dong, Z., Lin, S.-L., Tang, G.-H., Gu, Q., & Yin, S. (2015). Enantiomeric neolignans and sesquineolignans from Jatropha integerrima and their absolute configurations. RSC Advances, 5, 12202–12208. https://doi.org/10.1039/c4ra15966g

Zielinska, S., Wójciak-Kosior, M. J., Płachno, B., Sowa, I., Włodarczyk, M., & Matkowski, A. (2018). Quaternary alkaloids in Chelidonium majus in vitro cultures. Industrial Crops and Products, 123, 17–24. https://doi.org/10.1016/j.indcrop.2018.06.062

Zielińska, S., Dąbrowska, M., Kozłowska, W., Kalemba, D., Abel, R., Dryś, A., Szumny, A., & Matkowski, A. (2017). Ontogenetic and trans-generational variation of essential oil composition in Agastache rugosa. Industrial Crops and Products, 97, 612–619. https://doi.org/10.1016/j.indcrop.2017.01.009

Zielińska, S., Dryś, A., Piątczak, E., Kolniak-Ostek, J., Podgórska, M., Oszmiański, J., & Matkowski, A. (2019). Effect of LED illumination and amino acid supplementation on phenolic compounds profile in Agastache rugosa in vitro cultures. Phytochemistry Letters, 31, 12–19. https://doi.org/10.1016/j.phytol.2019.02.029

Zielińska, S., Piątczak, E., Kalemba, D., & Matkowski, A. (2011). Influence of plant growth regulators on volatiles produced by in vitro grown shoots of Agastache rugosa (Fisher & C. A. Meyer) O. Kuntze. Plant Cell Tissue and Organ Culture, 107, 161–169. https://doi.org/10.1007/s11240-011-9954-2

Zielińska, S., Piątczak, E., Kozłowska, W., Bohater, A., Jezierska-Domaradzka, A., Kolniak-Ostek, J., & Matkowski, A. (2020). LED illumination and plant growth regulators’ effects on growth and phenolic acids accumulation in Moluccella laevis L. in vitro cultures. Acta Physiologia Plantarum, 42, Article 72. https://doi.org/10.1007/s11738-020-03060-w




DOI: https://doi.org/10.5586/asbp.9110

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society