Assessment of the Value of Stomatal Size and Density as Hallmarks of Nonaploid Kiwifruit Plants

Iwona Chłosta, Grzegorz Góralski, Marzena Popielarska-Konieczna


In vitro-derived plants with elevated ploidy levels can display distinguishing features from the plants they are derived from, especially owing to their indirect regeneration. Genome size affects cell size and, thus, affects plant morphological characteristics. Therefore, stomata traits may be used as a diagnostic feature allowing identification of ploidy. Actinidia chinensis var. deliciosa A. Chev. (A. Chev.), known as kiwifruit, is successfully cultured in vitro and redifferentiated into plants via endosperm-derived calli. To identify differences between hexaploids obtained from seeds and confirmed nonaploids obtained from endosperm-derived calli, we analyzed the stomata. Our results confirmed that ploidy coincides with mean stomatal length, width, and density. Despite this correlation, this method cannot be used to distinguish individual hexaploid kiwifruit plants from nonaploid ones because samples with different ploidy yielded overlapping measurements.


Actinidia chinensis var. deliciosa; callus; endosperm culture; hexaploids; regenerants; polyploidy; size of stomata; stomatal density

Full Text:



Antoniazzi, C. A., Faria, R. B., de Carvalho, P. P., Mikovski, A. I., de Carvalho, I. F., de Matos, E. M., Reis, A. C., Viccini, L. F., Pinto, D. P. P., Rocha, D. I., Otoni, W. C., & da Silva, M. L. (2018). In vitro regeneration of triploid plants from mature endosperm culture of commercial passionfruit (Passiflora edulis Sims). Scientia Horticulturae, 238, 408–425.

Beaulieu, J. M., Leitch, I. J., Patel, S., Pendharkar, A., & Knight, C. A. (2008). Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist, 179, 975–986.

Boase, M. R., & Hopping, M. E. (1995). DNA dodecaploid plants detected among somaclonal of Actinidia deliciosa var. deliciosa cv. Hayward. Plant Cell Reports, 14, 319–323.

Chłosta, I., Kwolek, D., Sliwinska, E., Góralski, G., & Popielarska-Konieczna, M. (1921). Sex-linked molecular markers identify female lines in endosperm-derived kiwifruit callus and in regenerants. Plants, 10, Article 526.

Cramer, C. S. (1999). Laboratory techniques for determining ploidy in plants. HortTechnology, 9(4), 594–596.

Dirihan, S., Terho, P., Helander, M., & Saikkonen, K. (2013). Efficient analysis of ploidy levels in plant evolutionary ecology. Caryologia, 66(3), 251–256.

Góralski, G., Popielarska, M., Ślesak, H., Siwińska, D., & Batycka, M. (2005). Organogenesis in endosperm of Actinidia deliciosa cv. Hayward cultured in vitro. Acta Biologica Cracoviensia, Series Botanica, 47, 121–128.

Hata, S., Yomo, T., & Fujita, S. (2001). Breeding of triploid plants of stevia (Stevia rebaudiana BERTONI) with high rebaudioside A content. Japanese Journal of Tropical Agriculture, 45, 281–289.

Huang, H. (2016). Introduction. In H. Huang (Ed.), Kiwifruit: The genus Actinidia (pp. 1–7). Academic Press.

Kadota, M., & Niimi, Y. (2002). In vitro induction of tetraploid plants from a diploid Japanese pear cultivar (Pyrus pyrifolia N. cv. Hosui). Plant Cell Reports, 21, 282–286.

Mishra, M. K. (1997). Stomatal characteristics at different ploidy levels in Coffea L. Annals of Botany, 80, 689–692.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

Padoan, D., Mossad, A., Chiancone, B., Germana, M. A., & Khan, P. S. S. V. (2013). Ploidy levels in Citrus clementine affects leaf morphology, stomatal density and water content. Theoretical and Experimental Plant Physiology, 25, 283–290.

Popielarska-Konieczna, M., & Kleszcz, I. (2015). Preliminary studies on plants regenerated from endosperm-derived callus of kiwifruit (Actinidia deliciosa var. deliciosa). Modern Phytomorphology, 7, 55–57.

Popielarska-Konieczna, M., Kozieradzka-Kiszkurno, M., & Bohdanowicz, J. (2011). Cutin plays a role in differentiation of endosperm-derived callus in kiwifruit. Plant Cell Reports, 30, 2143–2152.

Przywara, L., Pandey, K. K., & Sanders, P. M. (1988). Length of stomata as an indicator of ploidy level in Actinidia deliciosa. New Zealand Journal of Botany, 26, 179–182.

R Core Team. (2018). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing.

Richardson, D. P., Ansell, J., & Drummond, L. N. (2018). The nutritional and health attributes of kiwifruit: A review. European Journal of Nutrition, 57, 2659–2676.

Thomas, T. D., Bhatnagar, A. K., & Bhojwani, S. S. (2000). Production of triploid plants of mulberry (Morus alba L.) by endosperm culture. Plant Cell Reports, 19, 395–399.

Touchell, D. H., Palmer, I. E., & Ranney, T. G. (2020). In vitro ploidy manipulation for crop improvement. Frontiers in Plant Science, 11, Article 722.

Wang, P., Mu, X., Gao, Y. G., Zhang, J., & Du, J. (2020). Successful induction and the systematic characterization of tetraploids in cerasus humilis for subsequent breeding. Scientia Horticulturae, 265, Article 109216.

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer International Publishing.


Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Polish Botanical Society