Intrapopulation Diversity of Chlamydomonas reinhardtii Response to Copper Ions: Growth and Photosynthetic Performance Under Stress

Bartosz Pluciński, Andrzej Waloszek, Joanna Rutkowska, Kazimierz Strzałka

Abstract


Despite being an essential micronutrient, copper is also a potentially toxic heavy metal. Using selection experiments, we produced Chlamydomonas reinhardtii populations with increased tolerance of copper ions and then derived pure cell lines from these populations. Strains derived from the same population (both adapted and nonadapted) significantly differed in terms of growth parameters. Cultivation of the strains in a range of copper ion concentrations revealed differences in growth and photosynthetic performance, which could be attributed to microevolutionary processes occurring with each cell division. Our results demonstrate the effects of environmental factors on rapidly multiplying microorganisms.

Keywords


Chlamydomonas reinhardtii; copper toxicity; microevolution; photosynthesis; chlorophyll fluorescence

Full Text:

PDF XML (JATS)

References


Andrés-Colás, N., Sancenón, V., Rodríguez-Navarro, S., Mayo, S., Thiele, D. J., Ecker, J. R., Puig, S., & Peñarrubia, L. (2006). The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. The Plant Journal, 45(2), 225–236. https://doi.org/10.1111/j.1365-313X.2005.02601.x

Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759

Barghi, N., Hermisson, J., & Schlötterer, C. (2020). Polygenic adaptation: A unifying framework to understand positive selection. Nature Reviews Genetics, 21, 769–781. https://doi.org/10.1038/s41576-020-0250-z

Beauvais-Flück, R., Slaveykova, V. I., & Cosio, C. (2019). Comparative study of Cu uptake and early transcriptome responses in the green microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii. Environmental Pollution, 250, 331–337. https://doi.org/10.1016/j.envpol.2019.04.032

Burda, K., Kruk, J., Schmid, G. H., & Strzałka, K. (2003). Inhibition of oxygen evolution in photosystem II by Cu(II) ions is associated with oxidation of cytochrome b559. Biochemical Journal, 371, 597–601. https://doi.org/10.1042/bj20021265

Burda, K., Kruk, J., Strzałka, K., Stanek, J., Schmid, G. H., & Kruse, O. (2006). Mossbauer studies of Cu(II) ions interaction with the non-heme iron and cytochrome b559 in Chlamydomonas reinhardtii PSI minus mutant. Acta Physica Polonica A, 109, 237–247. https://doi.org/10.1016/S0014-5793(02)03895-4

Burkhead, J. L., Gogolin Reynolds, K. A., Abdel-Ghany, S. E., Cohu, C. M., & Pilon, M. (2009). Copper homeostasis. New Phytologist, 182(4), 799–816. https://doi.org/10.1111/j.1469-8137.2009.02846.x

Contreras-Porcia, L., Dennett, G., González, A., Vergara, E., Medina, C., Correa, J. A., & Moenne, A. (2011). Identification of copper-induced genes in the marine alga Ulva compressa (Chlorophyta). Marine Biotechnology, 13, 544–556. https://doi.org/10.1007/s10126-010-9325-8

Devriese, M., Tsakaloudi, V., Garbayo, I., León, R., Vílchez, C., & Vigara, J. (2001). Effect of heavy metals on nitrate assimilation in the eukaryotic microalga Chlamydomonas reinhardtii. Plant Physiology and Biochemistry, 39(5), 443–448. https://doi.org/10.1016/S0981-9428(01)01257-8

Foyer, C. H., & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155(1), 93–100. https://doi.org/10.1104/pp.110.166181

Gotelli, N. J. (2008). A primer of ecology. Sinauer Associates. Harris, E. H. (2009). The Chlamydomonas sourcebook: Introduction to Chlamydomonas and its laboratory use (Vol. 1). Academic Press.

Jamers, A., Blust, R., De Coen, W., Griffin, J. L., & Jones, O. A. H. (2013). Copper toxicity in the microalga Chlamydomonas reinhardtii: An integrated approach. Biometals, 26(5), 731–740. https://doi.org/10.1007/s10534-013-9648-9

Jiang, Y., Zhu, Y., Hu, Z., Lei, A., & Wang, J. (2016). Towards elucidation of the toxic mechanism of copper on the model green alga Chlamydomonas reinhardtii. Ecotoxicology, 25(7), 1417–1425. https://doi.org/10.1007/s10646-016-1692-0

Leonard, S. S., Harris, G. K., & Shi, X. (2004). Metal-induced oxidative stress and signal transduction. Free Radical Biology and Medicine, 37(12), 1921–1942. https://doi.org/10.1016/j.freeradbiomed.2004.09.010

Luis, P., Behnke, K., Toepel, J., & Wilhelm, C. (2006). Parallel analysis of transcript levels and physiological key parameters allows the identification of stress phase gene markers in Chlamydomonas reinhardtii under copper excess. Plant, Cell & Environment, 29(11), 2043–2054. https://doi.org/10.1111/j.1365-3040.2006.01579.x

Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence – A practical guide. Journal of Experimental Botany, 51(345), 659–668. https://doi.org/10.1093/jexbot/51.345.659

Nowicka, B., Pluciński, B., Kuczyńska, P., & Kruk, J. (2016a). Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Ecotoxicology and Environmental Safety, 130, 133–145. https://doi.org/10.1016/j.ecoenv.2016.04.010

Nowicka, B., Pluciński, B., Kuczyńska, P., & Kruk, J. (2016b). Prenyllipid antioxidants participate in response to acute stress induced by heavy metals in green microalga Chlamydomonas reinhardtii. Environmental and Experimental Botany, 123, 98–107. https://doi.org/10.1016/j.envexpbot.2015.11.008

Pilon, M. (2017). The copper microRNAs. New Phytologist, 213(3), 1030–1035. https://doi.org/10.1111/nph.14244

Pluciński, B., Waloszek, A., Rutkowska, J., & Strzałka, K. (2018). Copper excess-induced large reversible and small irreversible adaptations in a population of Chlamydomonas reinhardtii CW15 (Chlorophyta). Acta Societatis Botanicorum Poloniae, 87(1), Article 3569. https://doi.org/10.5586/asbp.3569

Sabatini, S. E., Juárez, A. B., Eppis, M. R., Bianchi, L., Luquet, C. M., & Ríos de Molina, M. C. (2009). Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicology and Environmental Safety, 72(4), 1200–1206. https://doi.org/10.1016/j.ecoenv.2009.01.003

Sancenón, V., Puig, S., Mateu-Andrés, I., Dorcey, E., Thiele, D. J., & Peñarrubia, L. (2004). The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. Journal of Biological Chemistry, 279(15), 15348–15355. https://doi.org/10.1074/jbc.M313321200

Szivák, I., Behra, R., & Sigg, L. (2009). Metal-induced reactive oxygen species production in Chlamydomonas reinhardtii (Chlorophyceae). Journal of Phycology, 45(2), 427–435. https://doi.org/10.1111/j.1529-8817.2009.00663.x

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer. https://doi.org/10.1007/978-3-319-24277-4

Yruela, I. (2009). Copper in plants: Acquisition, transport and interactions. Functional Plant Biology, 36(5), 409–430. https://doi.org/10.1071/FP08288




DOI: https://doi.org/10.5586/asbp.908

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society