Transformation and Simplification of Aquatic Vegetation Structure and Reoligotrophication of a Lake During the Last 40 Years

Michał Brzozowski, Aleksandra Pełechata, Lech Kaczmarek, Mariusz Pełechaty

Abstract


The recovery or reconstruction of aquatic vegetation has recently been reported as a result of water quality improvement after anthropogenic eutrophication. The objectives of this study were: to investigate long-term trends in aquatic vegetation abundance in relation to decreasing water fertility and to present new directions in changes of the submerged aquatic vegetation structure, species richness, and biodiversity in Lake Kuźnickie (western Poland) with the perspective of the last 40 years (1978–2018). Lake Kuźnickie is an example of water quality improvement taking place without any additional reclamation measures, except a reduction in nutrient discharge into the lake from its direct catchment. Currently, the study lake represents a mesotrophic status. The Trophy State Index evidenced a decrease in the lake’s fertility compared to previous decades. The water quality improvement manifests in a significant reduction in the total phosphorus concentration. An analysis of the spatial changes in the phytolittoral evidenced a decrease in rush vegetation between 1978 and 2018 by over 2 ha. In the period 1978–2018, the aquatic vegetation structure in Lake Kuźnickie underwent significant reconstruction. Currently, charophytes play a much greater role in the lake compared to the last 40 years, contributing to the maintenance of the lake’s high water quality. Moreover, the endangered charophyte Lychnothamnus barbatus has recovered. Concurrently, however, the biodiversity and species richness of the submerged vegetation has decreased. At present, only four species dominate in the lake, including two charophytes L. barbatus, Nitellopsis obtusa, and two vascular plants Ceratophyllum demersum and Myriophyllum spicatum. Over 40 years, Lake Kuźnickie has changed from a eutrophic lake dominated by vascular plants to a mesotrophic lake with a codominant contribution by charophytes. The lake is characterized by good water quality, optimal for the development of aquatic vegetation, especially charophytes.

Keywords


aquatic vegetation; vascular plants; charophytes; Chara-lake; water fertility; Lychnothamnus barbatus; Nitellopsis obtusa

Full Text:

PDF XML (JATS)

References


Balevičius, A. (2001). Distribution of Lychnothamnus barbatus community in Lithuania. Biologija, 2, 70–73.

Bhatia, S. B. (2006). Ecological parameters and dispersal routes of Lychnothamnus barbatus (Characeae) in the Early Middle Holocene from the Ganga plain, India. Cryptogamie, Algologie, 27, 341–356.

Blaženčić, J., Stevanović, B., Blaženčić, Ž., & Stevanović, V. (2006). Red data list of charophytes in the Balkans. Biodiversity & Conservation, 15, 3445–3457. https://doi.org/10.1007/s10531-005-2008-5

Blindow, I., Hargeby, A., & Hilt, S. (2014). Facilitation of clear-water conditions in shallow lakes by macrophytes: Differences between charophyte and angiosperm dominance. Hydrobiologia, 737, 99–110. https://doi.org/10.1007/s10750-013-1687-2

Bornette, G., & Puijalon, S. (2009). Macrophytes: Ecology of aquatic plants. John Wiley & Sons. https://doi.org/10.1002/9780470015902.a0020475

Bostock, P. D., & Holland, A. E. (Eds.). (2010). Census of the Queensland flora. Queensland Herbarium.

Braun-Blanquet, J. (1964). Pflanzensoziologie. Grundzüge der Vegetationskunde [Plant sociology. Basics of Vegetation Science] (3rd ed.). Springer. https://doi.org/10.1007/978-3-7091-8110-2

Brzozowski, M., Pełechaty, M., & Pietruczuk, K. (2018). Co-occurrence of the charophyte Lychnothamnus barbatus with higher trophy submerged macrophyte indicators. Aquatic Botany, 151, 51–55. https://doi.org/10.1016/j.aquabot.2018.08.003

Burkholder, J. M., & Glibert, P. M. (2013). Eutrophication and oligotrophication. In S. A. Levin (Ed.), Encyclopedia of biodiversity (2nd ed., pp. 347–371). Academic Press. https://doi.org/10.1016/B978-0-12-384719-5.00047-2

Carlson, R. E. (1977). A trophic state index for lakes. Limnology & Oceanography, 22, 361–369. https://doi.org/10.4319/lo.1977.22.2.0361

Casanova, M. T., & Brock, M. A. (1990). Charophyte germination and establishment from the seed bank of an Australian temporary lake. Aquatic Botany, 36, 247–254. https://doi.org/10.1016/0304-3770(90)90038-M

Casanova, M. T., García, A., & Feist, M. (2003). The ecology and conservation of Lychnothamnus barbatus (Characeae). Acta Microbiologica Sinica, 20, 118–128.

Dondajewska, R., Kowalczewska-Madura, K., Gołdyn, R., Kozak, A., Messyasz, B., & Cerbin, S. (2019). Long-term water quality changes as a result of a sustainable restoration – A case study of dimictic Lake Durowskie. Water, 11, Article 616. https://doi.org/10.3390/w11030616

Finger, D., Wüest, A., & Bossard, P. (2013). Effects of oligotrophication on primary production in peri-alpine lakes. Water Resources Research, 49, 4700–4710. https://doi.org/10.1002/wrcr.20355

Gąbka, M., Owsianny, P. M., & Burchardt, L. (2010). The influence of co-occuring vegetation and habitat variables on distribution of rare charophyte species Lychnothamnus barbatus (Meyen) in lakes of western Poland. Polish Journal of Ecology, 58, 13–25.

Ginn, B. K. (2011). Distribution and limnological drivers of submerged aquatic plant communities in Lake Simcoe (Ontario, Canada): Utility of macrophytes as bioindicators of lake trophic status. Journal of Great Lakes Research, 37(3), 83–89. https://doi.org/10.1016/j.jglr.2011.03.015

Ginn, B. K., Dias, E. F. S., & Fleischaker, T. (2021). Trends in submersed aquatic plant communities in a large, inland lake: Impacts of an invasion by starry stonewort (Nitellopsis obtusa). Lake and Reservoir Management, 37(2), 199–213. https://doi.org/10.1080/10402381.2020.1859025

Gołdyn, R. (1983). Zbiorowiska roślinności zanurzonej jeziora Dominickiego i jeziora Kuźnickiego na Pojezierzu Wielkopolskim [Submerged plant communities of the Dominickie Lake and the Kuźnickie Lake in Wielkopolska Lakeland]. Badania Fizjograficzne nad Polską Zachodnią, Seria B – Botanika, 34, 165–192.

Greenberg, A. E., Clesceri, L. S., & Eaton, A. D. (1992). Standard methods for the examination of water and wastewater (18th ed.). American Public Health Association; American Water Works Association; Water Pollution Control Federation.

Gross, E. (2009). Impact of reoligotrophication in Lake Constance on nutrient content and defensive phenolic compounds in Eurasian watermilfoil. Verhandlungen des Internationalen Verein Limnologie, 30, 897–899. https://doi.org/10.1080/03680770.2009.11902266

Heinonen, P. (1980). Quantity and composition of phytoplankton in Finnish inland waters. National Board of Waters, Finland.

Jaun, L., Finger, D., Zeh, M., Schurter, M., & Wüest, A. (2007). Effects of upstream hydropower operation and oligotrophication on the light regime of a turbid peri-alpine lake. Aquatic Sciences, 69, 212–226. https://doi.org/10.1007/s00027-007-0876-3

Karczmarz, K. (1967). Variabilité et distribution géographique de Lychnothamnus barbatus (Meyen) Leonh [Variability and geographic distribution of Lychnothamnus barbatus (Meyen) Leonh]. Acta Societatis Botanicorum Poloniae, 36, 431–439. https://doi.org/10.5586/asbp.1967.040

Karol, K. G., Skawinski, P. M., McCourt, R. M., Nault, E., Evans, R., Barton, M. E., Berg, M. S., Perleberg, D. J., & Hall, J. D. (2017). First discovery of the charophycean green alga Lychnothamnus barbatus (Charophyceae) extant in the New World. American Journal of Botany, 104, 1108–1116. https://doi.org/10.3732/ajb.1700172

Kerimoglu, O., Straile, D., & Peeters, F. (2013). Seasonal, inter-annual and long term variation in top-down versus bottom-up regulation of primary production. Oikos, 122, 223–234. https://doi.org/10.1111/j.1600-0706.2012.20603.x

Kłosowski, S. (1992). Ekologia i wartości wskaźnikowe zbiorowisk roślinności szuwarowej naturalnych zbiorników stojących [Ecology and index values of rush vegetation communities of natural standing reservoirs]. Fragmenta Floristica et Geobotanica Polonica, 37(2), 563–595.

Kłosowski, S. (2006). Metody identyfikacji zbiorowisk i analizy ich amplitudy ekologicznej [Methods of identification of communities and analysis of their ecological amplitude]. In J. Szmeja (Ed.), Przewodnik do badań roślinności wodnej [Guide to the study of aquatic vegetation] (pp. 367–391). Wydawnictwo Uniwersytetu Gdańskiego.

Kłosowski, S., & Kłosowski, G. (2006). Rośliny wodne i bagienne [Aquatic and marsh plants]. Multico.

Kolada, A. (2009). Is the Lychnothamnus barbatus (Meyen) Leonhardi 1963 a good indicator of water quality? A new location of the species in Gorskie Lake near Gostynin (central Poland). Oceanological and Hydrobiological Studies, 38, 39–43.

Krupska, J., Ossowski, P., Pełechaty, M., Gąbka, M., & Burchardt, L. (2011). Zróżnicowanie fitocenotyczne roślinności wodnej i szuwarowej Wielkopolskiego Parku Narodowego i jego otuliny oraz jej zmiany w czasie [Phytocoenotic diversity of water and rush vegetation of the Wielkopolska National Park and its buffer zone and its changes over time]. Morena, 15, 13–23.

Krupska, J., Pełechaty, M., Pukacz, A., & Ossowski, P. (2012). Effects of grass carp introduction on macrophyte communities in a shallow lake. Oceanological and Hydrobiological Studies, 41(1), 35–40. https://doi.org/10.2478/s13545-012-0004-4

Kufel, L., & Kufel, I. (2002). Chara beds acting as nutrient sinks in shallow lakes – A review. Aquatic Botany, 72, 249–260. https://doi.org/10.1016/S0304-3770(01)00204-2

Martín-Closas, C., Wójcicki, J. J., & Fonollá, L. (2006). Fossil charophytes and hydrophytic angiosperms as indicators of lacustrine trophic change. A case study in the Miocene of Catalonia (Spain). Cryptogamie, Algologie, 27, 357–379.

Moss, B., Hering, D., Green, A. J., Aidoud, A., Becares, E., Beklioglu, M., Bennion, H., Boix, D., Brucet, S., Carvalho, L., Clement, B., Davidson, T., Declerck, S., Dobson, M., van Donk, E., Dudley, B., Feuchtmayr, H., Friberg, N., Grenouillet, G., … Weyhenmeyer, G. A. (2009). Climate change and the future of freshwater biodiversity in Europe: A primer for policy-makers. Freshwater Reviews, 2(2), 103–130. https://doi.org/10.1608/FRJ-2.2.1

Nõges, P., Tõnu, F., Tõnno, I., Künnap, H., Luup, H., Salujõe, J., & Nõges, T. (2003). The role of charophytes in increasing water transparency: A case study of two shallow lakes in Estonia. Hydrobiologia, 506, 567–573. https://doi.org/10.1023/B:HYDR.0000008625.36438.75

Pełechata, A., Pełechaty, M., & Pukacz, A. (2015). Winter temperature and shifts in phytoplankton assemblages in a small Chara-lake. Aquatic Botany, 124, 10–18. https://doi.org/10.1016/j.aquabot.2015.03.001

Pełechata, A., Pukacz, A., Kaczmarek, L., & Pełechaty, M. (2020). Do charophytes influence biomass and species composition of phytoflagellates? Aquatic Botany, 165, Article 103240. https://doi.org/10.1016/j.aquabot.2020.103240

Pełechaty, M. (1997). Znaczenie ekotonów w funkcjonowaniu ekosystemów wodnych [The importance of ecotones in the functioning of aquatic ecosystems]. In L. Burchardt (Ed.), Teoretyczne i praktyczne aspekty badań ekologicznych [Theoretical and practical aspects of ecological research] (pp. 151–155). Sorus.

Pełechaty, M., Brzozowski, M., & Pietruczuk, K. (2017). Overwintering and gyrogonite formation by the rare and endangered indicative macroalga Lychnothamnus barbatus (Meyen) Leonh. in eutrophic conditions. Aquatic Botany, 139, 19–24. https://doi.org/10.1016/j.aquabot.2017.02.005

Pełechaty, M., & Burchardt, L. (1998). Problemy bioindykacji w strefie ekotonowej jezior [Bioindication problems in the ecotone zone of lakes]. In S. Radwan (Ed.), Ekotony słodkowodne, struktura – rodzaje – funkcjonowanie [Freshwater ecotones: Structure – types – functioning] (pp. 99–106). Wydawnictwo UMCS.

Pełechaty, M., Gąbka, M., Sugier, P., Pukacz, A., Chmiel, S., Ciecierska, H., Kolada, A., & Owsianny, P. M. (2009). Lychnothamnus barbatus in Poland: Habitats and associations. Charophytes, 2, 13–18.

Pełechaty, M., Pronin, E., & Pukacz, A. (2014). Charophyte occurrence in Ceratophyllum demersum stands. Hydrobiologia, 737, 111–120. https://doi.org/10.1007/s10750-013-1622-6

Pełechaty, M., & Pukacz, A. (2008). Klucz do oznaczanie gatunków ramienic (Characeae) w rzekach i jeziorach [Identification key for charophyte (Characeae) species in lakes and rivers]. Inspekcja Ochrony Środowiska.

Pieczyńska, E. (2008). Eutrofizacja płytkich jezior – znaczenie makrofitów [Eutrophication of shallow lakes – Importance of macrophytes]. Wiadomości Ekologiczne, 54(1), 3–28.

Polish Angling Association. (2018). Zarybienia wód przez Polski Związek wędkarski okręg w Poznaniu [Stocking of waters by the Polish Angling Association district in Poznań]. http://www.poznan.pzw.org.pl/cms/4224/zarybianie_wod

Pukacz, A., Pełechaty, M., & Pełechata, A. (2013). The relation between charophytes and habitat differentiation in temperate lowland lakes. Polish Journal of Ecology, 61, 1–14.

Raabe, U., Pukacz, A., Peschel, T., & Müller, R. (2012). Die Bart-Glantzleuchteralge, Lychnothamnus barbatus (Meyen) Leonh., in Deutschland wieder aufgefunden [Bearded stonewort algae. Lychnothamnus barbatus (Meyen) Leonh. rediscovered in Germany]. Verhandlungen des Botanischen Vereins von Berlin und Brandenburg, 145, 235–248.

Radziej, J. (1959). Jezioro Kuźnickie – mapa batymetryczna [Lake Kuźnickie – Bathymetric Map]. Instytut Rybactwa Śródlądowego WSR Olsztyn.

Richter, D., & Gross, E. M. (2013). Chara can outcompete Myriophyllum under low phosphorus supply. Aquatic Sciences, 75, 457–467. https://doi.org/10.1007/s00027-013-0292-9

Sand-Jensen, K., Bruun, H. H., & Baastrup-Spohr, L. (2016). Decade-long time delays in nutrient and plant species dynamics during eutrophication and re-oligotrophication of Lake Fure 1900–2015 [Special issue]. Journal of Ecology, 105(3), 690–700. https://doi.org/10.1111/1365-2745.12715

Sand-Jensen, K., Lagergaard Pedersen, N., Thorsgaard, I., Moeslund, B., Borum, J., & Brodersen, K. P. (2008). 100 years of vegetation decline and recovery in Lake Fure, Denmark. Journal of Ecology, 96(2), 260–271. https://doi.org/10.1111/j.1365-2745.2007.01339.x

Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B., & Jeppesen, E. (1993). Alternative equilibria in shallow lakes. Trends in Ecology & Evolution, 8, 275–279. https://doi.org/10.1016/0169-5347(93)90254-M

Scheffer, M., & van Nes, E. H. (2007). Shallow lakes theory revisited: Various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia, 584, 455–466. https://doi.org/10.1007/s10750-007-0616-7

Schnittler, M., & Ludwig, G. (1996). Zur Methodik der Erstellung Roter Listen [On the methodology of creating red lists]. In G. Ludwig, & M. Schnittler (Eds.), Rote Liste gefährdeter Pflanzen Deutschlands [Red list of endangered plants of Germany] (pp. 709–739). Landwirtschaftsverlag.

Schubert, H., Blindow, I., Bueno, N. C., Casanova, M. T., Pełechaty, M., & Pukacz, A. (2018). Ecology of charophytes – Permanent pioneers and ecosystem engineers. Perspectives in Phycology, 5, 61–74. https://doi.org/10.1127/pip/2018/0080

Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. University of Illinois Press.

Siemińska, J., Bąk, M., Dziedzic, J., Gąbka, M., Gregorowicz, P., Mrozińska, T., Pełechaty, M., Owsianny, P. M., Pliński, M., & Witkowski, A. (2006). Red list the algae in Poland. In Z. Mirek, K. Zarzycki, W. Wojewoda, & Z. Szeląg (Eds.), Red list of plants and fungi in Poland (pp. 35–52). W. Szafer Institute of Botany, Polish Academy of Sciences.

Sinkevičienė, Z. (2010). Morphological variation in Lychnothamnus barbatus (Meyen) Leonh. in Lake Balsys (Lithuania). Charophytes, 2, 25–30.

Sinkevičienė, Z., & Urbaitė-Maževič, N. (2012). Lychnothamnus barbatus (Meyen) Leonh. rediscovered in shalow Lake Šventininkai (Lithuania) after 50 years. Biodiversity: Research & Conservation, 25, 91–96. https://doi.org/10.2478/v10119-012-0012-7

Sugier, P. (2009). Charophytes of the excavated peatlands of mid-eastern Poland. Oceanological and Hydrobiological Studies, 38(2), 87–97.

Sugier, P., Pełechaty, M., Gąbka, M., Owsianny, P. M., Pukacz, A., Ciecierska, H., & Kolada, A. (2010). Lychnothamnus barbatus: Global history and distribution in Poland. Charophytes, 2, 19–24.

Szyper, H., Romanowicz, W., Stempniak, M., Gołdyn, R., Jankowski, A., & Lubner, H. (1980). Wpływ zanieczyszczeń z terenów rekreacyjnych na stan czystości wybranych jezior [Impact of pollution from recreational areas on the water quality of selected lakes] [Manuscript]. Instytut Kształtowania Ś Oddział w Poznaniu.

Urbaniak, J., & Gabka, M. (2014). Polish charophytes. An illustrated guide to identification. Wroclaw University of Environmental and Life Sciences.

van den Berg, M. S., Scheffer, M., Coops, H., & Simons, J. (1998). The role of Characean algae in the management of eutrophic shallow lakes. Journal of Phycology, 34, 750–756. https://doi.org/10.1046/j.1529-8817.1998.340750.x

van der Maarel, E. (1979). Transformation of cover abundance values in phytosociology and its effects on community similarity. Vegetation, 39, 97–114. https://doi.org/10.1007/BF00052021

Van Donk, E., Hessen, D. O., Verschoor, A. M., & Gulati, D. G. (2008). Re-oligotrophication by phosphorus reduction and effects on seston quality in lakes. Limnologica, 38(3–4), 189–202. https://doi.org/10.1016/j.limno.2008.05.005

Verbeek, L., Gall, A., Hillebrand, H., & Striebel, M. (2018). Warming and oligotrophication cause shifts in freshwater phytoplankton communities. Global Change Biology, 24, 4532–4543. https://doi.org/10.1111/gcb.14337

Voivodship Inspectorate of Environmental Protection in Poznań. (1993). [Unpublished data of the state environmental monitoring conducted by Voivodship Inspectorate of Environmental Protection (VIEP) in Poznań, available on request at the institution]. VIEP in Poznań.

Voivodship Inspectorate of Environmental Protection in Poznań. (2008). [Unpublished data of the state environmental monitoring conducted by Voivodship Inspectorate of Environmental Protection (VIEP) in Poznań, available on request at the institution]. VIEP in Poznań.

Wetzel, R. G., & Likens, G. E. (1991). Limnological analyses (2nd ed.). Springer. https://doi.org/10.1007/978-1-4757-4098-1




DOI: https://doi.org/10.5586/asbp.905

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society