The Coral of Plants

János Podani

Abstract


The present article has two primary objectives. First, the article provides a historical overview of graphical tools used in the past centuries for summarizing the classification and phylogeny of plants. It is emphasized that each published diagram focuses on only a single or a few aspects of the present and past of plant life on Earth. Therefore, these diagrams are less useful for communicating general knowledge in botanical research and education. Second, the article offers a solution by describing the principles and methods of constructing a lesser- known image type, the coral, whose potential usefulness in phylogenetics was first raised by Charles Darwin. Cladogram topology, phylogenetic classification and nomenclature, diversity of taxonomic groups, geological timescale, paleontological records, and other relevant information on the evolution of Archaeplastida are simultaneously condensed for the first time into the same figure – the Coral of Plants. This image is shown in two differently scaled parts to efficiently visualize as many details as possible, because the evolutionary timescale is much longer, and the extant diversity is much lower for red and green algae than for embryophytes. A fundamental property of coral diagrams, that is their self-similarity, allows for the redrawing of any part of the diagram at smaller scales.

Keywords


Archaeplastida; branching silhouette diagrams; cladistics; classification; geological timescale; paleontology; phylogeny; Tree of Life

Full Text:

PDF XML (JATS)

References


Adl, S. M., Simpson, A. G. B., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. R., Bowser, S. S., Brugerolle, G., Fensome, R. A., Fredericq, S., James, T. Y., Karpov, S., Kugrens, P., Krug, J., Lane, C. E., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., … Taylor, M. F. J. R. (2005). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology, 52(5), 399–451. https://doi.org/10.1111/j.1550-7408.2005.00053.x

Angiosperm Phylogeny Group. (1998). An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden, 85(4), 531–553. https://doi.org/10.2307/2992015

Angiosperm Phylogeny Group II. (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, 141(4), 399–436. https://doi.org/10.1046/j.1095-8339.2003.t01- 1-00158.x

Angiosperm Phylogeny Group III. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161(2), 105–121. https://doi.org/10.1111/j.1095- 8339.2009.00996.x

Angiosperm Phylogeny Group IV. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1), 1–20. https://doi.org/10.1111/boj.12385

Archibald, D. (2009). Edward Hitchcock’s pre-Darwinian (1840) “Tree of life”. Journal of the History of Biology, 42, 561–592. https://doi.org/10.1007/s10739-008-9163-y

Archibald, D. (2014). Aristotle’s ladder, Darwin’s tree. Columbia University Press. https://doi.org/10.7312/columbia/9780231164122.001.0001

Baum, B. R., Duncan, T., & Phillips, R. B. (1984). A bibliography of numerical phenetic studies in systematic botany. Annals of the Missouri Botanical Garden, 71, 1044–1060.

Baum, D. A., & Offner, S. (2008). Phylogenies and tree-thinking. The American Biology Teacher, 70, 222–229. https://doi.org/10.2307/30163248

Bredekamp, H. (2005). Darwins Korallen: Die frühen Evolutionsdiagramme und die Tradition der Naturgeschichte [Darwin’s Corals: The early evolution diagrams and the tradition of natural history]. Klaus Wagenbruch.

Cantino, P. D., Doyle, J. A., Graham, S. W., Judd, W. S., Olmstead, R. G., Soltis, D. E., Soltis, P. S., & Donoghue, M. J. (2007). Towards a phylogenetic nomenclature of Tracheophyta. Taxon, 56, 822–846. https://doi.org/10.2307/25065864

Cascales-Miñana, B., Steemans, P., Servais, T., Lepot, K., & Gerrienne, P. (2019). An alternative model for the earliest evolution of vascular plants. Lethaia, 52, 445–453. https://doi.org/10.1111/let.12323

Cavalier-Smith, T. (1981). Eukaryote kingdoms: Seven or nine? BioSystems, 14(3–4), 461–481. https://doi.org/10.1016/0303-2647(81)90050-2

Cellinese, N., Baum, D. A., & Mishler, B. D. (2012). Species and phylogenetic nomenclature. Systematic Biology, 61(5), 885–891. https://doi.org/10.1093/sysbio/sys035

Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qiu, Y. L., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R., Sytsma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., … Albert, V. A. (1993). Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden, 80(3), 528–580. https://doi.org/10.2307/2399846

Christenhusz, M. J. M., & Byng, J. W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa, 261(3), 201–217. https://doi.org/10.11646/phytotaxa.261.3.1

Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J. X. (2013). The ICS International Chronostratigraphic Chart. Episodes, 36, 199–204. https://doi.org/10.18814/epiiugs/2013/v36i3/002

Costa, J. T. (2009). The annotated origin. A facsimile of the first edition of “On the origin of species” by Charles Darwin. Belknap Press.

Crepet, W. L., & Niklas, K. J. (2018). Early tracheophyte phylogeny: A preliminary assessment of homologies. In M. J. Krings, C. J. Harper, N. R. Cúneo, & G. W. Rothwell (Eds.), Transformative paleobotany (pp. 69–92). Academic-Elsevier. https://doi.org/10.1016/B978-0-12-813012-4.00005-X

Dayrat, B., Cantino, P. D., Clarke, J. A., & Queiroz, K. (2008). Species names in the PhyloCode: The approach adopted by the International Society for Phylogenetic Nomenclature. Systematic Biology, 57, 507–514. https://doi.org/10.1080/10635150802172176

DiMichele, W. A., & Bateman, R. M. (1996). Plant paleoecology and evolutionary inference: Two examples from the Paleozoic. Review of Paleobotany and Palynology, 90, 223–247. https://doi.org/10.1016/0034-6667(95)00085-2

Elgorriaga, A., Escapa, I. H., Rothwell, G. W., Tomescu, A. M. F., & Cúneo, N. R. (2018). Origin of Equisetum: Evolution of horsetails (Equisetales) within the major euphyllophyte clade Sphenopsida. American Journal of Botany, 105(8), 1286–1303. https://doi.org/10.1002/ajb2.1125

Funk, V. A., & Wagner, W. H. (1982). A bibliography of botanical cladistics: I. Brittonia, 34, 118–124. https://doi.org/10.2307/2806409

Gawryluk, R. M. R., Tikhonenkov, D. V., Hehenberger, E., Husnik, F., Mylnikov, A. P., & Keeling, P. J. (2019). Non-photosynthetic predators are sister to red algae. Nature, 572(Article 7768), 240–243. https://doi.org/10.1038/s41586-019-1398-6

Gibson, T. M., Shih, P. M., Cumming, V. M., Fischer, W. W., Crockford, P. W., Hodgskiss, M. S. W., Wörndle, S., Creaser, R. A., Rainbird, R. H., Skulski, T. M., & Halverson, G. P. (2017). Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology, 46(2), 135–138. https://doi.org/10.1130/G39829.1

Gitzendanner, M. A., Soltis, P. S., Wong, G. K. S., Ruhfel, B. R., & Soltis, D. E. (2018). Plastid phylogenomic analysis of green plants: A billion years of evolutionary history. American Journal of Botany, 105(3), 291–301. https://doi.org/10.1002/ajb2.1048

Gomez, B., Daviero-Gomez, V., Coiffard, C., Martín-Closas, C., & Dilcher, D. L. (2015). Montsechia, an ancient aquatic angiosperm. Proceedings of the National Academy of Sciences of the United States of America, 112(35), 10985–10988. https://doi.org/10.1073/pnas.1509241112

Grewe, F., Guo, W., Gubbels, E. A., Hansen, A. K., & Mower, J. P. (2013). Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes. BMC Evolutionary Biology, 13, Article 8. https://doi.org/10.1186/1471-2148-13-8

Griffing, L. R. (2011). Who invented the dichotomous key? Richard Waller’s watercolors of the herbs of Britain. American Journal of Botany, 98(12), 1911–1923. https://doi.org/10.3732/ajb.1100188

Guiry, M. D., & Guiry, G. M. (2020). AlgaeBase. https://www.algaebase.org

Hellström, P. (2019). Trees of knowledge. Science and the shape of genealogy. Acta Universitatis Upsalienses, 51, 1–339.

Hennig, W. (1966). Phylogenetic systematics. University of Illinois Press.

Hernick, L. V., Landing, E., & Bartowski, K. E. (2008). Earth’s oldest liverworts – Metzgeriothallus sharonae sp. nov. from the Middle Devonian (Givetian) of eastern New York, USA. Review of Palaeobotany and Palynology, 148(2), 154–162. https://doi.org/10.1016/j.revpalbo.2007.09.002

Hilton, J., & Bateman, R. M. (2006). Pteridosperms are the backbone of seed-plant phylogeny. Journal of the Torrey Botanical Society, 133, 119–168. https://doi.org/dnd8v6

Hull, D. L. (1985). Darwinism as a historical entity: A historiographic proposal. In D. Kohn (Ed.), The Darwinian heritage (pp. 773–812). Princeton University Press. https://doi.org/10.1515/9781400854714.773

Keeling, P. J. (2013). The number, speed, and impact of plastid endosymbiosis in eukaryotic evolution. Annual Review of Plant Biology, 64, 583–607. https://doi.org/10.1146/annurev-arplant-050312-120144

Kenrick, P., & Crane, P. R. (1997). The origin and early evolution of plants on land. Smithsonian Institution Press. https://doi.org/10.1038/37918

Kumar, S., Stecher, S., Suleski, M., & Hedges, S. B. (2017). TimeTree: A resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution, 34, 1812–1819. https://doi.org/10.1093/molbev/msx116

Kutschera, U. (2011). From the scala naturae to the symbiogenetic and dynamic tree of life. Biology Direct, 6, Article 33. https://doi.org/10.1186/1745-6150-6-33

LaRocca, D. (2013). Emerson’s English traits and the natural history of metaphor. Bloomsbury.

Lecointre, G. (2015). Descent (filiation). In T. Heams, P. Huneman, G. Lecointre, & M. Silberstein (Eds.), Handbook of evolutionary thinking in the sciences (pp. 159–207). Springer. https://doi.org/10.1007/978-94-017-9014-7_9

Leliaert, F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F., & Clerck, O. D. (2012). Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 31(1), 1–46. https://doi.org/10.1080/07352689.2011.615705

Leliaert, F., Tronholm, A., Lemieux, C., Turmel, M., DePriest, M. S., Bhattacharya, D., Karol, K. G., Fredericq, S., Zechman, F. W., & Lopez-Bautista, J. M. (2016). Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov. Scientific Reports, 6, Article 25367. https://doi.org/10.1038/srep25367

Li, F. W., Nishiyama, T., Waller, M., Frangedakis, E., Keller, J., Li, Z., Fernandez-Pozo, N., Barker, M. S., Bennett, T., Blázquez, M. A., Cheng, S., Cuming, A. C., de Vries, J., de Vries, S., Delaux, P. M., Diop, I. S., Harrison, C. J., Hauser, D., Hernández- García, J., … Szövényi, P. (2020). Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nature Plants, 6, 259–272. https://doi.org/10.1038/s41477-020-0618-2

Li, H. T., Yi, T. S., Gao, L. M., Ma, P. F., Zhang, T., Yang, J. B., Gitzendanner, M. A., Fritsch, P. W., Cai, J., Luo, Y., Wang, H., Bank, M., Zhang, S. D., Wang, Q. F., Wang, J., Zhang, Z. R., Fu, C. N., Yang, J., Hollingsworth, P. M., … Li, D. Z. (2019). Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants, 5, 461–470. https://doi.org/10.1038/s41477-019-0421-0

Mackiewicz, P., & Gagat, P. (2014). Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies. Are we close to a consensus? Acta Societatis Botanicorum Poloniae, 83(4), 263–280. https://doi.org/10.5586/asbp.2014.044

Margulis, L., Chapman, M., Guerrero, R., & Hall, J. (2006). The last eukaryotic common ancestor (LECA): Acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon. Proceedings of the National Academy of Sciences of the United States of America, 103(35), 13080–13085. https://doi.org/10.1073/pnas.0604985103

Mishler, B. D. (2014). History and theory in the development of phylogenetics in botany. In A. Hamilton (Ed.), Evolution of phylogenetic systematics (pp. 189–210). University of California Press.

Morrison, D. A. (2013). Phylogenetic networks 1900–1990. Genealogical world of phylogenetic networks. http://phylonetworks.blogspot.com/2013/09/phylogenetic-networks-1900-1990.html

Muñoz-Gómez, S. A., Mejía-Franco, F. G., Durnin, K., Colp, M., Grisdale, C. J., Archibald, J. M., & Slamovits, C. H. (2017). The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known. Current Biology, 27(11), 1677–1684. https://doi.org/10.1016/j.cub.2017.04.054

Niklas, K. J., Tiffney, B. H., & Knoll, A. H. (1985). Patterns in vascular land plant diversification: An analysis at the species level. In J. W. Valentine (Ed.), Phanerozoic diversity patterns: Profiles in macroevolution (pp. 97–128). Princeton University Press. https://doi.org/10.1515/9781400855056.97

Palmer, J. D., Soltis, D. E., & Chase, M. W. (2004). The plant tree of life: An overview and some points of view. American Journal of Botany, 91(10), 1437–1445. https://doi.org/10.3732/ajb.91.10.1437

Penny, D. (2011). Darwin’s theory of descent with modification, versus the biblical tree of life. PLoS Biology, 9(7), Article 1001096. https://doi.org/10.1371/journal.pbio.1001096

Pietsch, T. W. (2012). Trees of life. The Johns Hopkins University Press.

Podani, J. (2010). Monophyly and paraphyly: A discourse without end? Taxon, 59, 1011–1015. https://doi.org/10.1002/tax.594002

Podani, J. (2013). Tree thinking, time and topology: Comments on the interpretation of tree diagrams in evolutionary/phylogenetic systematics. Cladistics, 29, 315–327. https://doi.org/10.1111/j.1096-0031.2012.00423.x

Podani, J. (2015). A növények evolúciója és osztályozása – Rendhagyó rendszertan [Evolution and systematics of plants – Ordering without orders]. Eötvös Kiadó.

Podani, J. (2017). Different from trees, more than metaphors: Branching silhouettes-corals, cacti, and the oaks. Systematic Biology, 66(5), 737–753. https://doi.org/10.1093/sysbio/syx039

Podani, J. (2019). The Coral of Life. Evolutionary Biology, 46, 123–144. https://doi.org/10.1007/s11692-019-09474-w

Pteridophyte Phylogeny Group – PPG I. (2016). A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution, 54(6), 563–603. https://doi.org/10.1111/jse.12229

Qiu, Y. L., Li, L., Wang, B., Chen, Z., Knoop, V., Groth-Malonek, M., Dombrovska, O., Lee, J., Kent, L., Rest, J., Estabrook, G. F., Hendry, T. A., Taylor, D. W., Testa, C. M., Ambros, M., Crandall-Stotler, B., Duff, R. J., Stech, M., Frey, W., … Davis, C. C. (2006). The deepest divergences in land plants inferred from phylogenomic evidence. Proceedings of the National Academy of Sciences of the United States of America, 103(42), 15511–15516. https://doi.org/10.1073/pnas.0604985103

Ragan, M. A. (2009). Trees and networks before and after Darwin. Biology Direct, 4, Article 43. https://doi.org/10.1186/1745-6150-4-43

Rosindell, J., & Harmon, L. J. (2012). OneZoom: A fractal explorer for the tree of life. PLoS Biology, 10(10), Article e1001406. https://doi.org/10.1371/journal.pbio.1001406

Rothwell, G. W., & Stockey, R. A. (2008). Phylogeny and evolution of ferns: A paleontological perspective. In T. A. Ranker & C. H. Haufler (Eds.), Biology and evolution of ferns and lycophytes (pp. 332–366). Cambridge University Press. https://doi.org/10.1017/CBO9780511541827.014

Ruhfel, B. R., Gitzendanner, M. A., Soltis, P. S., Soltis, D. E., & Burleigh, J. G. (2014). From algae to angiosperms – Inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evolutionary Biology, 14, Article 23. https://doi.org/10.1186/1471-2148-14-23

Salamon, M. A., Gerrienne, P., Steemans, P., Gorzelak, P., Filipiak, P., Hérissé, A. L., Paris, F., Cascales-Miñana, B., Brachaniec, T., Misz-Kennan, M., Niedźwiedzki, R., & Trela, W. (2018). Putative late Ordovician land plants. New Phytologist, 218, 1305–1309. https://doi.org/10.1111/nph.15091

Sánchez-Baracaldo, P., Raven, J. A., Pisani, D., & Knoll, A. H. (2017). Early photosynthetic eukaryotes inhabited low-salinity habitats. Proceedings of the National Academy of Sciences of the United States of America, 114(37), E7737–E7745. https://doi.org/10.1073/pnas.1620089114

Servais, T., Cascales-Miñana, B., Cleal, C. J., Gerrienne, P., Harper, D. A. T., & Neumann, M. (2019). Revisiting the great Ordovician diversification of land plants: Recent data and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 534, Article 109280. https://doi.org/10.1016/j.palaeo.2019.109280

Shelton, G. W. K., Stockey, R. A., Rothwell, G. W., & Tomescu, A. M. F. (2015). Exploring the fossil history of pleurocarpous mosses: Tricostaceae fam. nov. from the Cretaceous of Vancouver Island, Canada. American Journal of Botany, 102(11), 1883–1900. https://doi.org/10.3732/ajb.1500360

Smith, S. A., & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105(3), 302–314. https://doi.org/10.1002/ajb2.1019

Sneath, P. H. A., & Sokal, R. (1973). Numerical taxonomy. W. H. Freeman.

Sokal, R., & Sneath, P. H. A. (1963). Principles of numerical taxonomy. W. H. Freeman.

Sokoloff, D. D., Rudall, P. J., Bateman, R. M., & Remizowa, M. (2015). Functional aspects of the origin and subsequent evolution of cotyledons in seed plants. Botanica Pacifica, 4(2), 35–47. https://doi.org/10.17581/bp.2015.04208

Sporne, K. R. (1974). The morphology of angiosperms. Hutchinson & Co.

Stevens, P. F. (2001). Angiosperm Phylogeny Website. Version 14, July 2017 (and more or less continuously updated since). http://www.mobot.org/MOBOT/research/APweb/

Stewart, W. N., & Rothwell, G. W. (1993). Paleobotany and the evolution of plants (2nd ed.). Cambridge University Press.

Stuessy, T. F. (2009). Plant taxonomy (2nd ed.). Columbia University Press.

Sundberg, P. E. R., & Pleijel, F. (1994). Phylogenetic classification and the definition of taxon names. Zoologica Scripta, 23, 19–25. https://doi.org/10.1111/j.1463- 6409.1994.tb00369.x

Tang, Q., Pang, K., Yuan, X., & Xuaio, S. (2020). A one-billion-year-old multicellular chlorophyte. Nature Ecology and Evolution, 4, 543–549. https://doi.org/10.1038/s41559- 020-1122-9

Tassy, P. (2011). Trees before and after Darwin. Journal of Zoological Systematics and Evolutionary Research, 49, 89–101. https://doi.org/10.1111/j.1439-0469.2010.00585.x

Thorne, R. F. (1992). Classification and geography of the flowering plants. Botanical Review, 58, 225–327. https://doi.org/10.1007/BF02858611

Wagner, W. H. (1980). Origin and philosophy of the groundplan-divergence method of cladistics. Systematic Botany, 5, 173–193. https://doi.org/10.2307/2418624

Whittaker, E. H. (1969). New concepts of kingdoms of organisms. Science, 163, 150–160. https://doi.org/10.1126/science.163.3863.150

Yang, E. C., Boo, S. M., Bhattacharya, D., Saunders, G. W., Knoll, A. H., Fredericq, S., Graf, L., & Yoon, H. S. (2016). Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Scientific Reports, 6, Article 21361. https://doi.org/10.1038/srep21361

Zuljevic, A., Kaleb, S., Peña, V., Despalatovic, I., Cvitkovic, I., Clerck, O. D., Gall, L. L., Falace, A., Vita, F., Braga, J. C., & Antolic, B. (2016). First freshwater coralline alga and the role of local features in a major biome transition. Scientific Reports, 6, Article 19642. https://doi.org/10.1038/srep19642




DOI: https://doi.org/10.5586/asbp.8937

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society