Hepatica transsilvanica Fuss (Ranunculaceae) is an Allotetraploid Relict of the Tertiary Flora in Europe – Molecular Phylogenetic Evidence

Levente Laczkó, Gábor Sramkó

Abstract


The Hepatica section Angulosa consists of mainly tetraploid (2n = 28) species that are distributed disjunctly throughout Eurasia. Karyological evidence proves the hybrid origin of the polyploid species of this section. Hepatica transsilvanica is a member of this species group with a conspicuous distribution restricted to the Eastern Carpathians. Based on genome size and cytotypes, the paternal parent of H. transsilvanica is described to be the only diploid species in section Angulosa, H. falconeri. The maternal species is hypothesized to be H. nobilis, a European species with entirely lobed leaves and a wider distribution area. Although the hybrid origin of H. transsilvanica is well documented by karyological evidence, the time of hybridization has never been studied. By using sequences of both the nuclear and plastid genome, we reconstructed the phylogenetic relationships and divergence times of H. transsilvanica and its parental species. The identity of the parental species is corroborated by discordant gene tree topologies of the nrITS and plastid sequences. Moreover, both gene copies of the parental species could be identified with the low-copy nuclear gene, MLH1. Divergence dating analysis using Bayesian phylogenetic methods strongly supported the long-term survival of H. transsilvanica in the Southeastern Carpathians, as the most recent common ancestor of the hybrid and parent species existed not later than the beginning of the Pleistocene, ca. 3 million years ago. These results not only highlight the biogeographic importance of the Southeastern Carpathians in the Quaternary glaciation periods, but also emphasize that Tertiary lineages could have survived in a Central European cryptic refugium.

Keywords


disjunct distribution; divergence date estimation; hybrid speciation; nrITS; MLH1; plastid DNA; glacial refugium; Carpathians

Full Text:

PDF XML (JATS)

References


Álvarez, I., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29(3), 417–434. https://doi.org/10.1016/s1055- 7903(03)00208-2

Anisimova, M., Gil, M., Dufayard, J. F., Dessimoz, C., & Gascuel, O. (2011). Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Systematic Biology, 60(5), 685–699. https://doi.org/10.1093/sysbio/syr041

Bailey, C. D., Carr, T. G., Harris, S. A., & Hughes, C. E. (2003). Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution, 29(3), 435–455. https://doi.org/10.1016/j.ympev.2003.08.021

Baldwin, B. G., Sanderson, M. J., Porter, J. M., Wojciechowski, M. F., Campbell, C. S., & Donoghue, M. J. (1995). The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden, 82, 247–277. https://doi.org/10.2307/2399880

Bartha, L., Macalik, K., & Keresztes, L. (2014). Molecular evidence for the hybrid origin of Hepatica transsilvanica (Ranunculaceae) based on nuclear gene sequences. Studia Universitatis Babes–Bolyai, Biologia, 59(1), 55–62.

Bartha, L., Sramkó, G., Volkova, P. A., Surina, B., Ivanov, A. L., & Banciu, H. L. (2015). Patterns of plastid DNA differentiation in Erythronium (Liliaceae) are consistent with allopatric lineage divergence in Europe across longitude and latitude. Plant Systematics and Evolution, 301(6), 1747–1758. https://doi.org/10.1007/s00606-014-1190-x

Bouckaert, R., & Drummond, A. J. (2017). bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology, 17(1), Article 42. https://doi.org/10.1186/s12862-017-0890-6

Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., Maio, N. D., Matschiner, M., Mendes, F. K., Müller, N. F., Ogilvie, H. A., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., … Drummond, A. J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15(4), Article e1006650. https://doi.org/10.1371/journal.pcbi.1006650

Bruen, T. C., Philippe, H., & Bryant, D. (2006). A simple and robust statistical test for detecting the presence of recombination. Genetics, 172(4), 2665–2681. https://doi.org/10.1534/genetics.105.048975

Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340

Feliner, G. N., & Rosselló, J. A. (2007). Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Molecular Phylogenetics and Evolution, 44(2), 911–919. https://doi.org/10.1016/j.ympev.2007.01.013

Flot, J. F. (2010). SeqPHASE: A web tool for interconverting PHASE input/output files and FASTA sequence alignments. Molecular Ecology Resources, 10(1), 162–166. https://doi.org/10.1111/j.1755-0998.2009.02732.x

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. https://doi.org/10.1093/sysbio/syq010

Hendrych, R. (1981). Bemerkungen zum Endemismus in der Flora der Tschechoslowakei [Remarks on endemism in the flora of Czechoslovakia]. Preslia, 53(2), 97–120.

Hewitt, G. M. (1999). Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society, 68(1–2), 87–112. https://doi.org/10.1111/j.1095-8312.1999.tb01160.x

Hoot, S. B., Meyer, K. M., & Manning, J. C. (2012). Phylogeny and reclassification of Anemone (Ranunculaceae), with an emphasis on austral species. Systematic Botany, 37(1), 139–152. https://doi.org/10.1600/036364412X616729

Hurdu, B. I., Escalante, T., Pușcaș, M., Novikoff, A., Bartha, L., & Zimmermann, N. E. (2016). Exploring the different facets of plant endemism in the South-Eastern Carpathians: A manifold approach for the determination of biotic elements, centres and areas of endemism. Biological Journal of the Linnean Society, 119(3), 649–672. https://doi.org/10.1111/bij.12902

Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2), 254–267. https://doi.org/10.1093/molbev/msj030

Jiang, N., Zhou, Z., Yang, J. B., Zhang, S. D., Guan, K. Y., Tan, Y. H., & Yu, W. B. (2017). Phylogenetic reassessment of tribe Anemoneae (Ranunculaceae): Non-monophyly of Anemone s. l. revealed by plastid datasets. PloS One, 12(3), Article e0174792. https://doi.org/10.1371/journal.pone.0174792

Kliment, J., Turis, P., & Janisova, M. (2016). Taxa of vascular plants endemic to the Carpathian Mts. Preslia, 88(1), 19–76.

Laczkó, L., Lukács, B. A., Mesterházy, A., Molnár V., A., & Sramkó, G. (2019). Is Nymphaea lotus var. thermalis a Tertiary relict in Europe? Aquatic Botany, 155, 1–4. https://doi.org/10.1016/j.aquabot.2019.02.002

Lefort, V., Longueville, J. E., & Gascuel, O. (2017). SMS: Smart model selection in PhyML. Molecular Biology and Evolution, 34(9), 2422–2424. https://doi.org/10.1093/molbev/msx149

Lendvay, B., Kadereit, J. W., Westberg, E., Cornejo, C., Pedryc, A., & Höhn, M. (2016). Phylogeography of Syringa josikaea (Oleaceae): Early Pleistocene divergence from east Asian relatives and survival in small populations in the Carpathians. Biological Journal of the Linnean Society, 119(3), 689–703. https://doi.org/10.1111/bij.12499

Liu, H., He, J., Ding, C., Lyu, R., Pei, L., Cheng, J., & Xie, L. (2018). Comparative analysis of complete chloroplast genomes of Anemoclema, Anemone, Pulsatilla, and Hepatica revealing structural variations among genera in tribe Anemoneae (Ranunculaceae). Frontiers in Plant Science, 9, Article 1097. https://doi.org/10.3389/fpls.2018.01097

Maturana-Russel, P., Brewer, B. J., Klaere, S., & Bouckaert, R. (2018). Model selection and parameter inference in phylogenetics using nested sampling. Systematic Biology, 68(2), 219–233. https://doi.org/10.1093/sysbio/syy050

Mogensen, H. L. (1996). The hows and whys of cytoplasmic inheritance in seed plants. American Journal of Botany, 83(3), 383–404. https://doi.org/10.2307/2446172

Mosolygó-Lukács, A., Sramkó, G., Barabás, S., Czeglédi, L., Jávor, A., Molnár V., A., & Surányi, G. (2016). Molecular genetic evidence for allotetraploid hybrid speciation in the genus Crocus L. (Iridaceae). Phytotaxa, 258(2), 121–136. https://doi.org/10.11646/phytotaxa.258.2.2

Mráz, P., & Ronikier, M. (2016). Biogeography of the Carpathians: Evolutionary and spatial facets of biodiversity. Biological Journal of the Linnean Society, 119(3), 528–559. https://doi.org/10.1111/bij.12918

Pfosser, M., Sun, B. Y., Stuessy, T. F., Jang, C. G., Guo, Y. P., Taejin, K., Hwan, K. C., Kato, H., & Sugawara, T. (2011). Phylogeny of Hepatica (Ranunculaceae) and origin of Hepatica maxima Nakai endemic to Ullung Island, Korea. Stapfia, 95, 16–27.

Ronikier, M., Cieślak, E., & Korbecka, G. (2008). High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): Evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Molecular Ecology, 17(7), 1763–1775. https://doi.org/10.1111/j.1365- 294X.2008.03664.x

Sang, T. (2002). Utility of low-copy nuclear gene sequences in plant phylogenetics. Critical Reviews in Biochemistry and Molecular Biology, 37(3), 121–147. https://doi.org/10.1080/10409230290771474

Schaal, B. A., & Olsen, K. M. (2000). Gene genealogies and population variation in plants. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7024–7029. https://doi.org/10.1073/pnas.97.13.7024

Slovák, M., Kučera, J., Turis, P., & Zozomova-Lihova, J. (2012). Multiple glacial refugia and postglacial colonization routes inferred for a woodland geophyte, Cyclamen purpurascens: Patterns concordant with the Pleistocene history of broadleaved and coniferous tree species. Biological Journal of the Linnean Society, 105(4), 741–760. https://doi.org/10.1111/j.1095-8312.2011.01826.x

Sramkó, G., Laczkó, L., Volkova, P. A., Bateman, R. M., & Mlinarec, J. (2019). Evolutionary history of the Pasque-flowers (Pulsatilla, Ranunculaceae): Molecular phylogenetics, systematics and rDNA evolution. Molecular Phylogenetics and Evolution, 135, 45–61. https://doi.org/10.1016/j.ympev.2019.02.015

Sramkó, G., Paun, O., Brandrud, M. K., Laczkó, L., Molnár V., A., & Bateman, R. M. (2019). Iterative allogamy–autogamy transitions drive actual and incipient speciation during the ongoing evolutionary radiation within the orchid genus Epipactis (Orchidaceae). Annals of Botany, 124(3), 481–497. https://doi.org/10.1093/aob/mcz103

Stephens, M., & Scheet, P. (2005). Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. The American Journal of Human Genetics, 76(3), 449–462. https://doi.org/10.1086/428594

Stephens, M., Smith, N., & Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics, 68, 978–989. https://doi.org/10.1086/319501

Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1), Article vey016. https://doi.org/10.1093/ve/vey016

Svenning, J. C. (2003). Deterministic Plio-Pleistocene extinctions in the European cool- temperate tree flora. Ecology Letters, 6(7), 646–653. https://doi.org/10.1046/j.1461- 0248.2003.00477.x

Taberlet, P., Fumagalli, L., Wust-Saucy, A. G., & Cosson, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7(4), 453–464. https://doi.org/10.1046/j.1365-294x.1998.00289.x

Tamura, M. (1993). Ranunculaceae. In K. Kubitzki (Ed.), The families and genera of vascular plants (pp. 563–583). Springer. https://doi.org/10.1007/978-3-662-02899-5_67

Twyford, A. D., & Ennos, R. A. (2012). Next-generation hybridization and introgression. Heredity, 108(3), 179–189. https://doi.org/10.1038/hdy.2011.68

Wang, W., Lin, L., Xiang, X. G., del C. Ortiz, R., Liu, Y., Xiang, K. L., Yu, S. X., Xing, Y. W., & Chen, Z. D. (2016). The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae. Scientific Reports, 6, Article 27259. https://doi.org/10.1038/srep27259

Weiss, H., Sun, B. Y., Stuessy, T. F., Kim, C. H., Kato, H., & Wakabayashi, M. (2002). Karyology of plant species endemic to Ullung Island (Korea) and selected relatives in peninsular Korea and Japan. Botanical Journal of the Linnean Society, 138(1), 93–105. https://doi.org/10.1046/j.1095-8339.2002.00013.x

Weiss-Schneeweiss, H., Schneeweiss, G. M., Stuessy, T. F., Mabuchi, T., Park, J. M., Jang, C. G., & Sun, B. Y. (2007). Chromosomal stasis in diploids contrasts with genome restructuring in auto- and allopolyploid taxa of Hepatica (Ranunculaceae). New Phytologist, 174(3), 669–682. https://doi.org/10.1111/j.1469-8137.2007.02019.x

Wendel, J. F. (2000). Genome evolution in polyploids. Plant Molecular Biology, 42, 225–249. https://doi.org/10.1023/A:1006392424384

Wendel, J. F., & Doyle, J. J. (1998). Phylogenetic incongruence: Window into genome history and molecular evolution. In D. E. Soltis, P. S. Soltis, & J. J. Doyle (Eds.), Molecular systematics of plants II (pp. 265–296). Springer. https://doi.org/10.1007/978-1-4615- 5419-6_10

Willis, K. J., & Niklas, K. J. (2004). The role of Quaternary environmental change in plant macroevolution: The exception or the rule? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1442), 159–172. https://doi.org/10.1098/rstb.2003.1387

Yokoyama, J., Suzuki, M., Iwatsuki, K., & Hasebe, M. (2000). Molecular phylogeny of Coriaria, with special emphasis on the disjunct distribution. Molecular Phylogenetics and Evolution, 14(1), 11–19. https://doi.org/10.1006/mpev.1999.0672

Zhang, N., Zeng, L., Shan, H., & Ma, H. (2012). Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. New Phytologist, 195(4), 923–937. https://doi.org/10.1111/j.1469-8137.2012.04212.x

Zonneveld, B. J. M. (2010). Genome sizes in Hepatica Mill. (Ranunculaceae): Show a loss of DNA, not a gain, in polyploids. Journal of Botany, Article 758260. https://doi.org/10.1155/2010/758260




DOI: https://doi.org/10.5586/asbp.8934

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society