Out of Colchis: The Colonization of Europe by Primula vulgaris Huds. (Primulaceae)

Polina Volkova, Levente Laczkó, Olga Demina, Ivan Schanzer, Gábor Sramkó

Abstract


In the cold periods of Quaternary climatic fluctuations, many temperate species underwent severe range contractions, and their survival during these periods was associated with climatically more favorable regions, so-called glacial refugia, from which subsequent range expansions took place. In this regard, the relative roles of the Southern (“main”), Northern (i.e., cryptic northern), and Eastern European (e.g., Colchis) refugia in shaping the evolutionary history of European temperate plants should be evaluated. In this study, we investigated the phylogeographic structure of Primula vulgaris, a European mesophilous species, by comparing DNA sequences derived from the nuclear (nrITS) and the plastid (trnL-trnF and rpl32-trnL) genomes of specimens covering the entire distribution range of the species. The variability in flower morphology was also studied on an area-wide scale with geometric morphometry. Our results clearly show the importance of the northern and eastern refugia (the Carpathian Basin and Colchis) as sources of genetic variation among European mesophilous plant species. Primula vulgaris spread initially from the Colchis refugium westwards, and a proportion of the colonists survived during the last glacial period in the Carpathian Basin, which may have served as a secondary center of diversity from which all Europe was subsequently populated.

Keywords


Caucasus; Carpathians; cryptic northern refugium; nrITS; pDNA; temperate plant phylogeography

Full Text:

PDF XML (JATS)

References


Adams, D. C., & Otárola-Castillo, E. (2013). Geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4, 393–399. https://doi.org/10.1111/2041-210x.12035

Álvarez, I., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29, 417–434. https://doi.org/10.1016/S1055- 7903(03)00208-2

Bartha, L., Sramkó, G., Volkova, P. A., Surina, B., Ivanov, A. L., & Banciu, H. L. (2015). Patterns of plastid DNA differentiation in Erythronium (Liliaceae) are consistent with allopatric lineage divergence in Europe across longitude and latitude. Plant Systematics and Evolution, 301, 1747–1758. https://doi.org/10.1007/s00606-014-1190-x

Christe, C., Kozlowski, G., Frey, D., Betrisey, S., Maharramova, E., Garfi, G., Pirintsos, S., & Naciri, Y. (2014). Footprints of past intensive diversification and structuring in the genus Zelkova (Ulmaceae) in South-Western Eurasia. Journal of Biogeography, 41, 1081–1093. https://doi.org/10.1111/jbi.12276

Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659. https://doi.org/10.1046/j.1365- 294x.2000.01020.x

Crandall, K. A. (1996). Multiple interspecies transmission of human and simian T-cell leukemia/lymphoma virus type I sequences. Molecular Biology and Evolution, 13, 115–131. https://doi.org/10.1093/oxfordjournals.molbev.a025550

Daneck, H., Abraham, V., Fér, T., & Marhold, K. (2011). Phylogeography of Lonicera nigra in Central Europe inferred from molecular and pollen evidence. Preslia, 83, 237–257.

Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.

Feurdean, A., Wohlfarth, B., Björkman, L., Tantau, I., Bennike, O., Willis, K. J., Farcas, S., & Robertsson, A. M. (2007). The influence of refugial population on Lateglacial and early Holocene vegetational changes in Romania. Review of Paleobotany and Palynology, 145, 305–320. https://doi.org/10.1016/j.revpalbo.2006.12.004

Gömöry, D., Paule, L., Shvadchak, I. M., Popescu, F., Sułkowska, M., Hynek, V., & Longauer, R. (2003). Spatial patterns of the genetic differentiation in European beech (Fagus sylvatica L.) at allozyme loci in the Carpathians and the adjacent regions. Silvae Genetica, 52, 78–83.

Grimm, G. W., & Denk, T. (2014). The Colchic region as refuge for relict tree lineages: Cryptic speciation in field maples. Turkish Journal of Botany, 38, 1050–1066. https://doi.org/10.3906/bot-1403-87

Haines, A. J., & Crampton, J. S. (2000). Improvements to the method of Fourier shape analysis as applied in morphometric studies. Palaeontology, 43, 765–783. https://doi.org/10.1111/1475-4983.00148

Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, Article 4.

Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247–276. https://doi.org/10.1111/j.1095-8312.1996.tb01434.x

Hewitt, G. M. (2000). The genetic legacy of quaternary ice ages. Nature, 405, 907–913. https://doi.org/10.1038/35016000

Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 359, 183–195. https://doi.org/10.1098/rstb.2003.1388

Jacquemyn, H., Endels, P., Brys, R., Hermy, M., & Woodell, S. R. J. (2009). Biological flora of the British Isles: Primula vulgaris Huds. [P. acaulis (L.) Hill]. Journal of Ecology, 97, 812–833. https://doi.org/10.1111/j.1365-2745.2009.01513.x

Jia, D. R., Abbott, R. J., Liu, T. L., Mao, K. S., Bartish, I. V., & Liu, J. Q. (2012). Out of the Qinghai–Tibet Plateau: Evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophae rhamnoides (Elaeagnaceae). New Phytologist, 194, 1123–1133. https://doi.org/10.1111/j.1469-8137.2012.04115.x

Kaмeлин [Kamelin], Р. B. [R. V.], Oвecнoв [Ovesnov], С. A. [S. A.], Шилoвa [Shilova], С. И. [S. I.]. (1999). Heмopaльныe элeмeнты вo φлopax Уpaлa и Сибиpи [Nemoral elements in floras of Urals and Siberia]. Издaтeльcтвo Пepмcкoгo yнивepcитeтa [Perm University Press].

Kopжинcкий [Korzhinskiĭ], С. И. [S. I.]. (1899). Рacтитeльнocть [Vegetation]. In Энциклoпeдия Бpoкгayзa и Эφpoнa [Encyclopaedia of Brokgauz and Efron]. Φ. A. Бpoкгayз – И. A. Эφpoн [F. A. Brokgauz – I. A. Efron].

Kramp, K., Huck, S., Niketić, M., Tomović, G., & Schmitt, T. (2009). Multiple glacial refugia and complex postglacial range shifts of the obligatory woodland plant Polygonatum verticillatum (Convallariaceae). Plant Biology, 11, 392–404. https://doi.org/10.1111/j.1438-8677.2008.00130.x

Lowe, A., Harris, S., & Ashton, P. (2004). Ecological genetics: Design, analysis, and application. Blackwell Publishing.

Magri, D., Vendramin, G. G., Comps, B., Dupanloup, I., Geburek, T., Gömöry, D., Latałowa, M., Litt, T., Paule, L., Roure, J. M., Tantau, I., Knaap, W. O., Petit, R. J., & Beaulieu, J. L. (2006). A new scenario for the quaternary history of European beech populations: Palaeobotanical evidence and genetic consequences. New Phytologist, 171, 199–221. https://doi.org/10.1111/j.1469-8137.2006.01740.x

Manafzadeh, S., Salvo, G., & Conti, E. (2014). A tale of migrations from east to west: The Irano-Turanian floristic region as a source of Mediterranean xerophytes. Journal of Biogeography, 41, 366–379. https://doi.org/10.1111/jbi.12185

Markova, A., & Kolfschoten, T. (Eds.). (2008). Evolution of the European ecosystems during Pleistocene–Holocene transition. 24–8 kyr BP. KMK Scientific Press.

Mast, A. R., Kelso, S., Richards, A. J., Lang, D. J., Feller, D. M., & Conti, E. (2001). Phylogenetic relationships in Primula L. and related genera (Primulaceae) based on noncoding chloroplast DNA. International Journal of Plant Sciences, 162, 1381–1400. https://doi.org/10.1111/j.1469-8137.2006.01700.x

Meusel, W., Jäger, E., & Weinert, E. (1965). Vergleichende Chorologie der zentraleuropäischen Flora [Comparative chorology of Central European flora]. G. Fischer.

Michl, T., Huck, S., Schmitt, T., Liebrich, A., Haase, P., & Büdel, B. (2010). The molecular population structure of the tall forb Cicerbita alpina (Asteraceae) supports the idea of cryptic glacial refugia in Central Europe. Botanical Journal of the Linnean Society, 164, 142–154. https://doi.org/10.1111/j.1095-8339.2010.01079.x

Mosolygó-Lukács, A., Sramkó, G., Barabás, S., Czeglédi, L., Jávor, A., Molnár, V. A., & Surányi, G. (2016). Molecular genetic evidence for allotetraploid hybrid speciation in the genus Crocus L. (Iridaceae). Phytotaxa, 258, 121–136. https://doi.org/10.11646/phytotaxa.258.2.2

Müller, K. (2005). SeqState – Primer design and sequence statistics for phylogenetic DNA data sets. Applied Bioinformatics, 4, 65–69. https://doi.org/10.2165/00822942-200504010-00008

Nieto-Feliner, G., & Rosselló, J. A. (2007). Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Molecular Phylogenetics and Evolution, 44, 911–919. https://doi.org/10.1016/j.ympev.2007.01.013

Palme, A. E., Su, Q., Rautenberg, A., Manni, F., & Lascoux, M. (2003). Postglacial recolonization and cpDNA variation of silver birch, Betula pendula. Molecular Ecology, 12, 201–212. https://doi.org/10.1046/j.1365-294X.2003.01724.x

Provan, J., & Bennett, K. D. (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology Evolution, 23, 564–571. https://doi.org/10.1016/j.tree.2008.06.010

Pyhäjärvi, T., Salmela, M. J., & Savolainen, O. (2008). Colonization routes of Pinus sylvestris inferred from distribution of mitochondrial DNA variation. Tree Genetics and Genomes, 4, 247–254. https://doi.org/10.1007/s11295-007-0105-1

R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Richards, A. J. (2003). Primula. Timber Press.

Rohlf, F. J. (2006). tpsDig, version 2.10 [Computer software]. http://life.bio.sunysb.edu/morph/ index.html

Santos, A. M., Cabezas, M. P., Tavares, A. I., Xavier, R., & Branco, M. (2016). tcsBU: A tool to extend TCS network layout and visualization. Bioinformatics, 32, 627–628. http://doi.org/10.1093/bioinformatics/btv636

Schmidt-Lebuhn, A. N., Vos, J. M., Keller, B., & Conti, E. (2012). Phylogenetic analysis of Primula section Primula reveals rampant non-monophyly among morphologically distinct species. Molecular Phylogenetics and Evolution, 65, 23–34. https://doi.org/10.1016/j.ympev.2012.05.015

Seregin, A. (2020). Moscow University Herbarium (MW). Version 1.122 [Data set]. GBIF.org. https://doi.org/10.15468/cpnhcc

Shaw, J., Lickey, E. B., Schilling, E. E., & Small, R. L. (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. American Journal of Botany, 94, 275–288. https://doi.org/10.3732/ajb.94.3.275

Slovák, M., Kučera, J., Turis, P., & Zozomová-Lihová, J. (2012). Multiple glacial refugia and postglacial colonization routes inferred for a woodland geophyte, Cyclamen purpurascens: Patterns concordant with the Pleistocene history of broadleaved and coniferous tree species. Biological Journal of the Linnean Society, 105, 741–760. https://doi.org/10.1111/j.1095-8312.2011.01826.x

Sramkó, G., Molnár, V. A., Hawkins, J. A., & Bateman, R. M. (2014). Molecular phylogeny and evolutionary history of the Eurasiatic orchid genus Himantoglossum s. l. (Orchidaceae). Annals of Botany, 114, 1609–1626. https://doi.org/10.1093/aob/mcu179

Stewart, J. R., & Lister, A. M. (2001). Cryptic northern refugia and the origins of the modern biota. Trends in Ecology and Evolution, 16, 608–613. https://doi.org/10.1016/S0169- 5347(01)02338-2

Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell, J. A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H. W., Ingólfsson, O., Jakobsson, M., Kjær, K. H., Larsen, E., Lokrantz, H., Lunkka, J. P., Lyså, A., Mangerud, J., … Stein, R. (2004). Late Quaternary ice sheet history of Northern Eurasia. Quaternary Science Reviews, 23, 1229–1271. https://doi.org/10.1016/j.quascirev.2003.12.008

Taberlet, P., Fumagalli, L., Wust-Saucy, A. G., & Cossons, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7, 453–464. https://doi.org/10.1046/j.1365-294x.1998.00289.x

Taberlet, P., Gielly, L., Pautou, G., & Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 17, 1105–1109. https://doi.org/10.1007/BF00037152

Tarkhnishvili, D., Gavashelishvili, A., & Mumladze, L. (2012). Palaeoclimatic models help to understand current distribution of Caucasian forest species. Biological Journal of the Linnean Society, 105, 231–248. https://doi.org/10.1111/j.1095-8312.2011.01788.x

Templeton, A. R., Crandall, K. A., & Sing, C. F. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics, 132, 619–633.

Tollefsrud, M. M., Sønstebø, J. H., Brochmann, C., Johnsen, Ø., Skrøppa, T., & Vendramin, G. G. (2009). Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity, 102, 549–562. https://doi.org/10.1038/hdy.2009.16

Treier, U., & Müller-Schärer, H. (2011). Differential effects of historical migration, glaciations and human impact on the genetic structure and diversity of the montane pasture weed Veratrum album L. Journal of Biogeography, 38, 1776–1791. https://doi.org/10.1111/j.1365-2699.2011.02516.x

Trewick, S. A., Morgan-Richards, M., Russell, S. J., Henderson, S., Rumsey, F. J., Pínter, I., Barrett, J. A., Gibby, M., & Vogel, J. C. (2002). Polyploidy, phylogeography and Pleistocene refugia of rockfern Asplenum ceterah: Evidence from chloroplast DNA. Molecular Ecology, 11, 2003–2012. https://doi.org/10.1046/j.1365-294X.2002.01583.x

Valtueña, F. J., Preston, C. D., & Kadereit, J. W. (2012). Phylogeography of a Tertiary relict plant, Meconopsis cambrica (Papaveraceae), implies the existence of northern refugia for a temperate herb. Molecular Ecology, 21, 1423–1437. https://doi.org/10.1111/j.1365- 294X.2012.05473.x

Van Rossum, F., Martin, H., Le Cadre, S., Brachi, B., Christenhusz, M. J. M., & Touzet, P. (2018). Phylogeography of a widely distributed species reveals a cryptic assemblage of distinct genetic lineages needing separate conservation strategies. Perspectives in Plant Ecology, Evolution and Systematics, 35, 44–51. https://doi.org/10.1016/j.ppees.2018.10.003

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer-Verlag. https://doi.org/10.1007/978-0-387-21706-2

Volkova, P. A., Burlakov, Y. A., & Schanzer, I. A. (2020). Genetic variability of Prunus padus L. (Rosaceae) elaborates “a new Eurasian phylogeographical paradigm”. Plant Systematics and Evolution, 306, Article 1. https://doi.org/10.1007/s00606-020-01644-0

Volkova, P. A., Schanzer, I. A., & Meschersky, I. V. (2013). Colour polymorphism in common primrose (Primula vulgaris Huds.): Many colours – many species? Plant Systematics and Evolution, 299, 1075–1087. https://doi.org/10.1007/s00606-013-0780-3

Wen, J., & Zimmer, E. (1996). Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): Inferences from ITS sequences of nuclear ribosomal DNA. Molecular Phylogenetics and Evolution, 6, 167–177. https://doi.org/10.1006/mpev.1996.0069

Yoshioka, Y., Honjo, M., Iwata, H., Ninomiya, S., & Ohsawa, R. (2007). Pattern of geographical variation in petal shape in wild populations of Primula sieboldii E. Morren. Plant Species Biology, 22, 87–93. https://doi.org/10.1111/j.1442-1984.2007.00180.x

Yoshioka, Y., Iwata, H., Ohsawa, R., & Ninomiya, S. (2004). Analysis of petal shape variation of Primula sieboldii by elliptic fourier descriptors and principal component analysis. Annals of Botany, 94, 657–664. https://doi.org/10.1093/aob/mch190




DOI: https://doi.org/10.5586/asbp.89313

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society