Application of Horticultural and Tissue Culture Methods for Ex Situ Conservation of Endangered Primula farinosa L.

Ewa Sitek, Barbara Nowak, Michał Fecowicz, Zbigniew Gajewski, Piotr Dańda, Krzysztof Kapała, Barbara Kozik-Dąbek

Abstract


Our study aimed at active conservation of the last location of Primula farinosa, an endangered species in Poland, and assessed reproduction by seeds and plant propagation on sterile media in tissue culture conditions. We identified gibberellic acid (GA3) as the key factor stimulating germination of P. farinosa seeds. Growing juvenile plants under controlled temperature of 18/16 °C day/night yielded good quality plant material without mycorrhization. In tissue culture, the most favorable medium for shoot propagation was MS supplemented with the lowest tested concentration of indole-3-butyric acid (IBA; 0.05 mg dm−3) and 6-benzyl-aminopurine (BAP; 0.1 mg dm−3). The rooting ability of shoots was high and comparable for all auxins used. 2C DNA content of seed-derived and micropropagated plants did not indicate any change in the ploidy level during in vitro cultivation. Plants derived from seeds and tissue cultures were compared in a 2-year study. Of all the characteristics compared, only the number of flowers per inflorescence was lower for micropropagated plants when compared with the seed-origin plants in the first year of observation. The difference was of transient nature and was not observed in the second year of the study. Effective protocols for in vivo and in vitro propagation of P. farinosa were developed, which can be used in practical species protection.

Keywords


Carpathian flora; GA3; in vitro propagation; mycorrhiza; seed dormancy

Full Text:

PDF XML (JATS)

References


Alboresi, A., Gestin, C., Leydecker, M. T., Bedu, M., Meyer, C., & Truong, H. N. (2005). Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell and Environment, 28(4), 500–512. https://doi.org/10.1111/j.1365-3040.2005.01292.x

Alexander, M. P. (1969). Differential staining of aborted and nonaborted pollen. Stain Technology, 44(3), 117–122. https://doi.org/10.3109/10520296909063335

Arslan, H., Kirmizi, S., Güleryüz, G., & Sakar, F. (2011). Germination requirements of Androsace villosa L. (Primulaceae). Acta Biologica Cracoviensia Series Botanica, 53(2), 32–36. https://doi.org/10.2478/V10182-011-0029-9

Azcón-Aguilar, C., & Barea, J. M. (1997). Applying mycorrhiza biotechnology to horticulture: Significance and potentials. Scientia Horticulturae, 68(1–4), 1–24. https://doi.org/10.1016/S0304-4238(96)00954-5

Baskin, J. M., & Baskin, C. C. (2004). A classification system for seed dormancy. Seed Science Research, 14(1), 1–16. https://doi.org/10.1079/SSR2003150

Benson, E. E., Danaher, J. E., Pimbley, I. M., Anderson, C. T., Wake, J. E., Daley, S., & Adams, L. K. (2000). In vitro micropropagation of Primula scotica: A rare Scottish plant. Biodiversity and Conservation, 9(6), 711–726. https://doi.org/10.1023/A:1008941726419

Bizabani, C., Fontenla, S., & Dames, J. F. (2016). Ericoid fungal inoculation of blueberry under commercial production in South Africa. Scientia Horticulturae, 209, 173–177. https://doi.org/10.1016/j.scienta.2016.06.029

Bothe, H., Turnau, K., & Regvar, M. (2010). The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza, 20(7), 445–457. https://doi.org/10.1007/s00572-010-0332-4

Burney, D. A., & Burney, L. P. (2009). Inter situ conservation: Opening a “third front” in the battle to save rare Hawaiian plants. BGjournal, 6(2), 17–19.

Cerabolini, B., Andreis, R., Ceriani, R. M., Pierce, S., & Raimondi, B. (2004). Seed germination and conservation of endangered species from the Italian Alps: Physoplexis comosa and Primula glaucescens. Biological Conservation, 117(3), 351–356. https://doi.org/10.1016/j.biocon.2003.12.011

Chahtane, H., Kim, W., & Lopez-Molina, L. (2017). Primary seed dormancy: A temporally multilayered riddle waiting to be unlocked. Journal of Experimental Botany, 68(4), 857–869. https://doi.org/10.1093/jxb/erw377

Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C., & Diaz, S. (2000). Consequences of changing biodiversity. Nature, 405, 234–242. https://doi.org/10.1038/35012241

Chen, M., MacGregor, D. R., Dave, A., Florance, H., Moore, K., Paszkiewicz, K., Smirnoff, N., Graham, I. A., & Penfield, S. (2014). Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year. Proceedings of the National Academy of Sciences of the United States of America, 111(52), 18787–18792. https://doi.org/10.1073/pnas.1412274111

Cho, J. S., Jang, B. K., & Lee, C. H. (2018). Seed dormancy and germination characteristics of the endangered species Cicuta virosa L. in South Korea. Horticulture, Environment, and Biotechnology, 59(4), 473–481. https://doi.org/10.1007/s13580-018-0062-7

Cursach, J., & Rita, J. (2012). Implications of the reproductive biology of the narrow endemic Naufraga balearica (Apiaceae) for its conservation status. Plant Systematics and Evolution, 298(3), 581–596. https://doi.org/10.1007/s00606-011-0568-2

Dziurka, K., Skrzypek, E., & Dubert, F. (2019). Breaking seed dormancy of Astragalus penduliflorus Lam. Acta Societatis Botanicorum Poloniae, 88(1), Article 3617. https://doi.org/10.5586/asbp.3617

Gajewski, Z., Boroń, P., Lenart-Boroń, A., Nowak, B., Sitek, E., & Mitka, J. (2018). Conservation of Primula farinosa in Poland with respect to the genetic structure of populations. Acta Societatis Botanicorum Poloniae, 87(2), Article 3577. https://doi.org/10.5586/asbp.3577

Gajewski, Z., Sitek, E., Stolarczyk, P., Nowak, B., & Kapała, K. (2013). A current status of the population of Primula farinosa L. (Primulaceae) at the only one known site in Poland. Polish Journal of Ecology, 61(4), 797–804.

Galbraith, D. W. (1989). Analysis of higher plants by flow cytometry and cell sorting. International Review of Cytology, 116, 165–228. https://doi.org/10.1016/S0074-7696(08)60640-3

Gaudeul, M., & Till-Bottraud, I. (2004). Reproductive ecology of the endangered alpine species Eryngium alpinum L. (Apiaceae): Phenology, gene dispersal and reproductive success. Annals of Botany, 93(6), 711–721. https://doi.org/10.1093/aob/mch098

Grulich, V. (2012). Red list of vascular plants of the Czech Republic. Preslia, 84(3), 631–645.

Harley, J. L., & Harley, E. L. (1987). A check-list of mycorrhiza in the British flora. The New Phytologist, 105(2), 1–102. https://doi.org/10.1111/j.1469-8137.1987.tb00674.x

Hayta, S., Smedley, M. A., Li, J., Harwood, W. A., & Gilmartin, P. M. (2016). Plant regeneration from leaf-derived callus cultures of primrose (Primula vulgaris). HortScience, 51(5), 558–562. https://doi.org/10.21273/HORTSCI.51.5.558

He, H., Vidigal, D. S., Snoek, L. B., Schnabel, S., Nijveen, H., Hilhorst, H., & Bentsink, L. (2014). Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis. Journal of Experimental Botany, 65(22), 6603–6615. https://doi.org/10.1093/jxb/eru378

International Seed Testing Association. (1999). International rules for seed testing. Seed Science and Technology, 27(Suppl.).

IUCN/SSC. (2014). Guidelines on the use of ex situ management for species conservation. Version 2.0. IUCN Species Survival Commission.

Izydorczyk, C., Nguyen, T. N., Jo, S., Son, S., Tuan, P. A., & Ayele, B. T. (2018). Spatiotemporal modulation of abscisic acid and gibberellin metabolism and signalling mediates the effects of suboptimal and supraoptimal temperatures on seed germination in wheat (Triticum aestivum L.). Plant, Cell and Environment, 41(5), 1022–1037. https://doi.org/ 10.1111/pce.12949

Jaganathan, G. K. (2016). Influence of maternal environment in developing different levels of physical dormancy and its ecological significance. Plant Ecology, 217(1), 71–79. https://doi.org/10.1007/s11258-015-0560-y

Jia, Y., Zhang, Q. X., Pan, H. T., Wang, S. Q., Liu, Q. L., & Sun, L. X. (2014). Callus induction and haploid plant regeneration from baby primrose (Primula forbesii Franch.) anther culture. Scientia Horticulturae, 176, 273–281. https://doi.org/10.1016/j.scienta.2014.07.018

Jędrzejczyk, I., Morozowska, M., Nowińska, R., & Jagodziński, A. (2018). Primula veris plants derived from in vitro cultures and from seeds: Genetic stability, morphology, and seed characteristics. Turkish Journal of Botany, 42(4), 412–422. https://doi.org/10.3906/bot-1802-7

Jurkiewicz, A., Ryszka, P., Anielska, T., Waligórski, P., Białońska, D., Góralska, K., Tsimilli- Michael, M., & Turnau, K. (2010). Optimization of culture conditions of Arnica montana L.: Effects of mycorrhizal fungi and competing plants. Mycorrhiza, 20(5), 293–306. https://doi.org/10.1007/s00572-009-0280-z

Kapler, A., Krzyżewski, A., Niemczyk, M., Nowak, A., Podyma, W., Puchalski, J., Smieja, A., & Walerowski, P. (2013). Wybrane gatunki rzadkie, zagrożone i chronione zachowane ex situ w Banku Nasion PAN OB – CZRB w Powsinie w ramach projektu POIS.05.01.00- 00-156/09 „Ochrona ex situ dziko rosnących, zagrożonych i chronionych roślin w Polsce wschodniej” – FlorNaturOB [Selected rare, endangered and protected species preserved ex situ at the Seed Bank PAN OB - CZRB in Powsin as part of the project POIS.05.01.00-00- 156/09 “Ex situ conservation of wild, endangered and protected plants in eastern Poland” – FlorNaturOB]. Polish Academy of Sciences Botanical Garden – CBDC.

Kar, P., Chakraborty, A. K., Bhattacharya, M., Mishra, T., & Sen, A. (2019). Micropropagation, genetic fidelity assessment and phytochemical studies of Clerodendrum thomsoniae Balf. f. with special reference to its anti-stress properties. Research in Plant Biology, 9, 9–15. https://doi.org/10.25081/ripb.2019.v9.3779

Kaźmierczakowa, R. (2000). Stan populacji pierwiosnki omączonej Primula farinosa na stanowisku w Beskidzie Sadeckim [Status of Primula farinosa population in the Beskid Sądecki site]. Chrońmy Przyrodę Ojczystą, 4(56), 69–72.

Kaźmierczakowa, R. (2008). Bird’s-eye primrose Primula farinosa L. In Z. Mirek & H. Piękoś- Mirkowa (Eds.), Red data book of the Polish Carpathians. Vascular plants (pp. 184–185). W. Szafer Institute of Botany, Polish Academy of Sciences.

Kaźmierczakowa, R. (2014). Primula farinosa L. Bird’s-eye primrose. In R. Kaźmierczakowa, K. Zarzycki, & Z. Mirek (Eds.), Polish red data book of plants. Pteridophytes and flowering plants (pp. 381–383). W. Szafer Institute of Botany, Polish Academy of Sciences.

Kaźmierczakowa, R., Bloch-Orłowska, J., Celka, Z., Cwener, A., Dajdok, Z., Michalska- Hejduk, D., Pawlikowski, P., Szczęśniak, E., & Ziarnek, K. (2016). Polish red list of pteridophytes and flowering plants. Institute of Nature Conservation, Polish Academy of Sciences.

Kućmierz, J. (1971). Urocystis primulicola P. Magnus w Polsce. [Urocystis primulicola P. Magnus in Poland. Acta Mycologica, 7(1), 27–30. https://doi.org/10.5586/am.1971.005

Massey, J. R., & Whitson, P. D. (1980). Species biology, the key to plant preservation. Rhodora, 82(829), 97–103.

Miller, J. S., Porter-Morgan, H. A., Stevens, H., Boom, B., Krupnick, G. A., Acevedo-Rodríguez, P., Fleming, J., & Gensler, M. (2012). Addressing target two of the Global Strategy for Plant Conservation by rapidly identifying plants at risk. Biodiversity and Conservation, 21(7), 1877–1887. https://doi.org/10.1007/s10531-012-0285-3

Moharana, A., Das, A., Subudhi, E., Naik, S. K., & Barik, D. P. (2018). Assessment of genetic fidelity using random amplified polymorphic DNA and inter simple sequence repeats markers of Lawsonia inermis L. plants regenerated by axillary shoot proliferation. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88(1), 133–141. https://doi.org/10.1007/s40011-016-0740-0

Morozowska, M. (2002). Some factors affecting viability, dormancy and germination of Primula veris (L.) seeds. Folia Horticulturae, 14, 243–253.

Morozowska, M., & Wesołowska, M. (2004). In vitro clonal propagation of Primula veris L. and preliminary phytochemical analysis. Acta Biologica Cracoviensia Series Botanica, 46, 169–175.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497. https://doi.org/10.1111/ j.1399-3054.1962.tb08052.x

Nalousi, A. M., Hatamzadeh, A., Azadi, P., Mohsenpour, M., & Lahiji, H. S. (2019). A procedure for indirect shoot organogenesis of Polianthes tuberosa L. and analysis of genetic stability using ISSR markers in regenerated plants. Scientia Horticulturae, 244, 315–321. https://doi.org/10.1016/j.scienta.2018.09.066

Navarro, J. M., & Morte, A. (2019). Mycorrhizal effectiveness in Citrus macrophylla at low phosphorus fertilization. Journal of Plant Physiology, 232, 301–310. https://doi.org/10.1016/j.jplph.2018.11.027

Okršlar, V., Plaper, I., Kovač, M., Erjavec, A., Obermajer, T., Rebec, A., Ravnikar, M., & Žel, J. (2007). Saponins in tissue culture of Primula veris L. Vitro Cellular and Developmental Biology – Plant, 43(6), 644–651. https://doi.org/10.1007/s11627-007-9072-3

Penfield, S., & MacGregor, D. R. (2017). Effects of environmental variation during seed production on seed dormancy and germination. Journal of Experimental Botany, 68(4), 819–825. https://doi.org/10.1093/jxb/erw436

Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158–161. https://doi.org/10.1016/ S0007-1536(70)80110-3

Sarasan, V., Cripps, R., Ramsay, M. M., Atherton, C., McMichen, M., Prendergast, G., & Rowntree, J. K. (2006). Conservation in vitro of threatened plants – progress in the past decade. Vitro Cellular and Developmental Biology – Plant, 42(3), 206–214. https://doi.org/10.1079/IVP2006769

Schween, G., & Schwenkel, H. G. (2002). In vitro regeneration in Primula ssp. via organogenesis. Plant Cell Reports, 20(11), 1006–1010. https://doi.org/10.1007/s00299-002-0443-2

Schween, G., & Schwenkel, H. G. (2003). Effect of genotype on callus induction, shoot regeneration, and phenotypic stability of regenerated plants in the greenhouse of Primula ssp. Plant Cell, Tissue and Organ Culture, 72(1), 53–61. https://doi.org/ 10.1023/A:1021227414880

Sharaf, A. R. N., Hamidoghli, Y., & Zakizadeh, H. (2011). In vitro seed germination and micropropagation of primrose (Primula heterochroma Stapf.) an endemic endangered Iranian species via shoot tip explants. Horticulture, Environment, and Biotechnology, 52(3), 298–302. https://doi.org/10.1007/s13580-011-0129-1

Sharma, U., Rai, M. K., Shekhawat, N. S., & Kataria, V. (2019). Genetic homogeneity revealed in micropropagated Bauhinia racemosa Lam. using gene targeted markers CBDP and SCoT. Physiology and Molecular Biology of Plants, 25(2), 581–588. https://doi.org/10.1007/s12298-018-00639-z

Shimada, T., Matsushita, T., & Otani, M. (1997). Plant regeneration from leaf explants of Primula cuneifolia var. hakusanensis, “Hakusan-kozakura”. Plant Biotechnology, 14(1), 47–50. https://doi.org/10.5511/plantbiotechnology.14.47

Takihira, M., Otani, M., Tsuchiya, S., & Shimada, T. (2007). Plant regeneration from leaf explants of auricula cultivars (Primula pubescens Jacq.). Plant Biotechnology, 24(4), 425–427. https://doi.org/10.5511/plantbiotechnology.24.425

Thiem, B., & Śliwińska, E. (2003). Flow cytometric analysis of nuclear DNA content in cloudberry (Rubus chamaemorus L.) in vitro cultures. Plant Science, 164(1), 129–134. https://doi.org/10.1016/S0168-9452(02)00344-8

Trejgell, A., Dąbrowska, A., & Tretyn, A. (2012). Micropropagation and influence of in vitro culture on development of Cirsium pannonicum (L. f.) Link regenerants. Acta Scientiarum Polonorum, Hortorum Cultus, 11(5), 81–90.

Us-Camas, R., Rivera-Solís, G., Duarte-Aké, F., & la Peña, C. D. (2014). In vitro culture: An epigenetic challenge for plants. Plant Cell, Tissue and Organ Culture, 118(2), 187–201. https://doi.org/10.1007/s11240-014-0482-8

Volis, S. (2017). Complementarities of two existing intermediate conservation approaches. Plant Diversity, 39(6), 379–382. https://doi.org/10.1016/j.pld.2017.10.005

Witkowski, Z., Król, W., & Solarz, W. (Eds.). (2003). Carpathian list of endangered species. WWF International Danube-Carpathian Programme.

Żabicki, P., Śliwińska, E., Mitka, J., Sutkowska, A., Tuleja, M., Migdałek, G., Żabicka, J., Słomka, A., Kwiatkowska, M., & Kuta, E. (2019). Does somaclonal variation play advantageous role in conservation practice of endangered species?: comprehensive genetic studies of in vitro propagated plantlets of Viola stagnina Kit.(Violaceae). Plant Cell, Tissue and Organ Culture, 136(2), 339–352. https://doi.org/10.1007/s11240-018-1519-1

Zarzycki, K., Trzcińska-Tacik, H., Różański, W., Szeląg, Z., Wołek, J., & Korzeniak, U. (2002). Ekologiczne liczby wskaźnikowe roślin naczyniowych Polski [Ecological indicator values of vascular plants of Poland] (Vol. 2). W. Szafer Institute of Botany, Polish Academy of Sciences.

Ziarnek, K. (2017). Potrzeba restytucji wybranych gatunków roślin zagrożonych wyginięciem w celu wzmocnienia ich dziko występujących populacji wraz z analizą zasobów ogrodów botanicznych pod kątem posiadania tych gatunków. Ekspertyza wykonana na zlecenie Generalnej Dyrekcji Ochrony Środowiska [The need for restitution of selected plant species threatened with extinction in order to strengthen their wild populations along with an analysis of the resources of botanical gardens for the possession of these species. Expertise commissioned by the General Directorate for Environmental Protection]. Retrieved from https://www.gdos.gov.pl/files/artykuly/5055/Potrzeba-restytucji-wybranych-gatunk% C3%B3w_icon_icon.pdf

Zubek, S., Turnau, K., Tsimilli-Michael, M., & Strasser, R. J. (2009). Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza, 19(2), 113–123. https://doi.org/10.1007/s00572-008-0209-y




DOI: https://doi.org/10.5586/asbp.8913

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society