Evolutionary Pattern of High Variation Traits in Subfamily Zygophylloideae (Zygophyllaceae)

Jiancheng Wang, Honglan Yang, Tohir A. Bozorov, Dirk C. Albach, Daoyuan Zhang


Patterns in traits and trait combinations reflect how organisms cope with their environment. Owing to different degrees of variability, the performance of traits varies during adaption to the changing environment. In this study, we focused on a taxon dominant in arid regions – the subfamily Zygophylloideae. We analyzed the evolutionary patterns of functional traits to clarify the impact of trait attributes on niche shifts. The results of phylogenetic signal analysis of traits revealed that quantitative traits, such as plant height, were not evolutionarily conserved. Phylogenetic regression pointed out that there are synergistic changes in environmental factors and in some traits within a phylogenetic context. These traits can meet the requirements of different environments more easily, possibly owing to their high variability. As a result, species in the subfamily Zygophylloideae showed clustering in some phenotypic spaces. Thus, the adaptive evolution of traits reduced niche restrictions of related environmental factors on species. The evolutionary analysis of functional traits in subfamily Zygophylloideae proved that high variability of traits allows fine-tuning according to the related environmental factors during the evolutionary process and promotes niche shifts.


adaptive evolution; environmental factor; niche shift; phylogenetic relationships; trait; Zygophylloideae

Full Text:



Agrawal, A. A., Salminen, J.-P., & Fishbein, M. (2009). Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): Evidence for escalation. Evolution, 63(3), 663–673. https://doi.org/10.1111/j.1558-5646.2008.00573.x

Ahrens, D., Fujisawa, T., Krammer, H.-J., Eberle, J., Fabrizi, S., & Vogler, A. P. (2016). Rarity and incomplete sampling in DNA-based species delimitation. Systematic Biology, 65(3), 478–494. https://doi.org/10.1093/sysbio/syw002

Arbuckle, K., & Minter, A. (2015). Windex: Analyzing convergent evolution using the Wheatsheaf index in R. Evolutionary Bioinformatics, 11, 11–14. https://doi.org/10.4137/ebo.s20968

Beier, B. A. (2005). A revision of the desert shrub Fagonia (Zygophyllaceae). Systematics and Biodiversity, 3(3), 221–263. https://doi.org/10.1017/S1477200005001684

Beier, B. A., Chase, M. W., & Thulin, M. (2003). Phylogenetic relationships and taxonomy of subfamily Zygophylloideae (Zygophyllaceae) based on molecular and morphological data. Plant Systematics and Evolution, 240(1–4), 11–39. https://doi.org/10.1007/s00606-003-0007-0

Berenbaum, M. R., Favret, C., & Schuler, M. A. (1996). On defining “key innovations” in an adaptive radiation: Cytochrome P450s and papilionidae. The American Naturalist, 148, S139–S155. https://doi.org/10.1086/285907

Brunet, J., & Larson-Rabin, Z. (2012). The response of flowering time to global warming in a high-altitude plant: The impact of genetics and the environment. Botany, 90(4), 319–326. https://doi.org/10.1139/b2012-001

Buckley, L. B., Nufio, C. R., & Kingsolver, J. G. (2014). Phenotypic clines, energy balances and ecological responses to climate change. Journal of Animal Ecology, 83(1), 41–50. https://doi.org/10.1111/1365-2656.12083

Chevin, L.-M., Lande, R., & Mace, G. M. (2010). Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory. PLoS Biology, 8(4), e1000357–e1000357. https://doi.org/10.1371/journal.pbio.1000357

Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9(8), 772–772. https://doi.org/10.1038/nmeth.2109

Feder, J. L., Egan, S. P., & Forbes, A. A. (2012). Ecological adaptation and speciation: The evolutionary significance of habitat avoidance as a postzygotic reproductive barrier to gene flow. International Journal of Ecology, 2012, Article 456374. https://doi.org/10.1155/2012/456374

Grinnell, J. (1917). The niche-relationships of the California thrasher. The Auk, 34(4), 427–433. https://doi.org/10.2307/4072271

Holt, R. D. (2009). Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proceedings of the National Academy of Sciences of the United States of America, 106(Suppl. 2), 19659–19665. https://doi.org/10.1073/pnas.0905137106

Hunter, J. P., & Jernvall, J. (1995). The hypocone as a key innovation in mammalian evolution. Proceedings of the National Academy of Sciences of the United States of America, 92(23), 10718–10722. https://doi.org/10.1073/pnas.92.23.10718

Jablonski, D. (2008). Species selection: Theory and data. Annual Review of Ecology, Evolution, and Systematics, 39, 501–524. https://doi.org/10.1146/annurev.ecolsys.39.110707.173510

Jump, A. S., & Penuelas, J. (2005). Running to stand still: Adaptation and the response of plants to rapid climate change. Ecology Letters, 8(9), 1010–1020. https://doi.org/10.1111/j.1461-0248.2005.00796.x

Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463–1464. https://doi.org/10.1093/bioinformatics/btq166

Kocher, T. D. (2004). Adaptive evolution and explosive speciation: The cichlid fish model. Nature Reviews Genetics, 5(4), 288–298. https://doi.org/10.1038/nrg1316

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096

Laughlin, D. C. (2014). The intrinsic dimensionality of plant traits and its relevance to community assembly. Journal of Ecology, 102(1), 186–193. https://doi.org/10.1111/1365-2745.12187

Lauterbach, M., de Wet van der Merwe, P., Keßler, L., Pirie, M. D., Bellstedt, D. U., & Kadereit, G. (2016). Evolution of leaf anatomy in arid environments – a case study in southern African Tetraena and Roepera (Zygophyllaceae). Molecular Phylogenetics and Evolution, 97, 129–144. https://doi.org/10.1016/j.ympev.2016.01.002

Matsuzaki, S. S., Sasaki, T., & Akasaka, M. (2016). Invasion of exotic piscivores causes losses of functional diversity and functionally unique species in Japanese lakes. Freshwater Biology, 61(7), 1128–1142. https://doi.org/10.1111/fwb.12774

Mcghee, G. R. (2011). Convergent evolution: Limited forms most beautiful. MIT Press. https://doi.org/10.7551/mitpress/9780262016421.001.0001

Merilä, J., & Hendry, A. P. (2014). Climate change, adaptation, and phenotypic plasticity: The problem and the evidence. Evolutionary Applications, 7(1), 1–14. https://doi.org/10.1111/eva.12137

Ning, T., Xiao, H., Li, J., Hua, S., & Zhang, Y. P. (2010). Adaptive evolution of the mitochondrial ND6 gene in the domestic horse. Genetics and Molecular Research, 9(1), 144–150. https://doi.org/10.4238/vol9-1gmr705

Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., & Pearse, W. (2012). Caper: Comparative analyses of phylogenetics and evolution in R. R package version 0.5. Retrieved from https://cran.r-project.org/web/packages/caper/index.html

Penney, H. D., Hassall, C., Skevington, J. H., Abbott, K. R., & Sherratt, T. N. (2012). A comparative analysis of the evolution of imperfect mimicry. Nature, 483(7390), 461–464. https://doi.org/10.1038/nature10961

Pinheiro, J., Bates, D., Debroy, S., Sarkar, D., & Team, R. C. (2013). nlme: Linear and nonlinear mixed effects models. R package version 31–131. Retrieved from https://cran.r-project.org/web/packages/nlme/index.html

Rambaut, A., Suchard, M., & Drummond, A. (2014). Tracer v1.6. Retrieved from https://beast.bio.ed.ac.uk/Tracer

Ree, R. H. (2005). Detecting the historical signature of key innovations using stochastic models of character evolution and cladogenesis. Evolution, 59(2), 257–265. https://doi.org/10.1554/04-369

Reich, P. B., Wright, I. J., Cavender-Bares, J., Craine, J. M., Oleksyn, J., Westoby, M., & Walters, M. B. (2003). The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences, 164(S3), S143–S164. https://doi.org/10.1086/374368

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029

Segar, S. T., Pereira, R. A. S., Compton, S. G., & Cook, J. M. (2013). Convergent structure of multitrophic communities over three continents. Ecology Letters, 16(12), 1436–1445. https://doi.org/10.1111/ele.12183

Sheahan, M. C. (2007). Zygophyllaceae. In K. Kubitzki (Ed.), Flowering plants. Eudicots (pp. 488–500). Springer. https://doi.org/10.1007/978-3-540-32219-1_56

Sheahan, M. C., & Chase, M. W. (2000). Phylogenetic relationships within Zygophyllaceae based on DNA sequences of three plastid regions, with special emphasis on Zygophylloideae. Systematic Botany, 25(2), 371–371. https://doi.org/10.2307/2666648

Tingley, M. W., Monahan, W. B., Beissinger, S. R., & Moritz, C. (2009). Birds track their Grinnellian niche through a century of climate change. Proceedings of the National Academy of Sciences of the United States of America, 106(Supplement_2), 19637–19643. https://doi.org/10.1073/pnas.0901562106

Vincenzi, S. (2014). Extinction risk and eco-evolutionary dynamics in a variable environment with increasing frequency of extreme events. Journal of The Royal Society Interface, 11(97), Article 20140441. https://doi.org/10.1098/rsif.2014.0441

Walsh, J., Shriver, W. G., Olsen, B. J., & Kovach, A. I. (2016). Differential introgression and the maintenance of species boundaries in an advanced generation avian hybrid zone. BMC Evolutionary Biology, 16(1), Article 65. https://doi.org/10.1186/s12862-016-0635-y

Wheat, C. W., Vogel, H., Wittstock, U., Braby, M. F., Underwood, D., & Mitchell-Olds, T. (2007). The genetic basis of a plant insect coevolutionary key innovation. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20427–20431. https://doi.org/10.1073/pnas.0706229104

Whittall, J. B., & Hodges, S. A. (2007). Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature, 447(7145), 706–709. https://doi.org/10.1038/nature05857

Wilson, A. J. (2013). Flora of Australia. Meliaceae, Rutaceae, Zygophyllaceae (Vol. 26). CSIRO Publishing.

Winemiller, K. O., Fitzgerald, D. B., Bower, L. M., & Pianka, E. R. (2015). Functional traits, convergent evolution, and periodic tables of niches. Ecology Letters, 18(8), 737–751. https://doi.org/10.1111/ele.12462

Wu, S. D., Zhang, L. J., Lin, L., Yu, S. X., Chen, Z. D., & Wang, W. (2018). Insights into the historical assembly of global dryland floras: The diversification of Zygophyllaceae. BMC Evolutionary Biology, 18(1), Article 166. https://doi.org/10.1186/s12862-018-1277-z

Wu, Z., Raven, P., & Hong, D. (2008). Flora of China (Vol. 11). Science Press.

DOI: https://doi.org/10.5586/asbp.8911

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Polish Botanical Society