Stress or help, how does the grey heron Ardea cinerea L. modify the vegetation structure of the forest floor?

Wiktoria Hryń, Joanna Czarnecka, Ignacy Kitowski, Piotr Bartmiński, Robert Zubel

Abstract


The grey heron (Ardea cinerea) is a good example of an engineering species that forms nesting colonies (called heronries) composed of up to a few hundred nests during the breeding season. It exerts strong pressure on surrounding vegetation, mainly because of the heavy input of organic matter and high eutrophication. The birds also alter light conditions through direct tree damage. We aimed to examine the influence of a grey heron breeding colony on the soil properties and functional composition of the herb layer in two different forest communities: a suboceanic pine forest and a riparian mixed forest. We also wanted to establish whether these changes would make the forest ecosystem more vulnerable to colonization by nonforest species with higher light and trophic demands. Small-seeded, light demanding eutrophic species showed a tendency to be more abundant under the nests in both forest types. The calculated odds ratio (OR) showed that the probability of the presence of nonforest species under the nests was 29.5 times higher than that in the control plots (56 plants species were analyzed). Additionally, the nonforest species appeared to have high light and trophic demand (OR of 12.3 for light demand; OR of 7.0 for trophic demand), which explains the species turnover observed in the bird-affected microhabitats.

Keywords


engineering species; vegetation transformation; ruderal species; pine forest; riparian forest; soil properties

Full Text:

PDF

References


Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers. Oikos. 1994;69:373–386. https://doi.org/10.2307/3545850

Jones CG, Lawton JH, Shachak M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology. 1997;78:1946–1957. https://doi.org/10.1890/0012-9658(1997)078%5B1946:PANEOO%5D2.0.CO;2

Moore JW. Animal ecosystem engineers in streams. BioScience. 2006;56:237–246. https://doi.org/10.1641/0006-3568(2006)056%5B0237:AEEIS%5D2.0.CO;2

Kitowski I, Krawczyk R. Observation on some colonies of grey heron in Lublin region (southeast Poland). Berkut. 2005;14:45–49.

Mun HT. Effects of colony nesting of Ardea cinerea and Egretta alba modesta on soil properties and herb layer composition in a Pinus densiflora forest. Plant Soil. 1997;197:55–59. https://doi.org/10.1023/A:1004292103610

Hutchings MJ, John EA, Wijeshinge DK. Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology. 2003;84:2322–2334. https://doi.org/10.1890/02-0290

Baxter GS, Fairweather PG. Phosphorus and nitrogen in wetlands with and without egret colonies. Austral Ecol. 1994;19:409–416. https://doi.org/10.1111/j.1442-9993.1994.tb00506.x

Grime JP. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat. 1977;111:1169–1194. https://doi.org/10.1086/283244

García LV, Ramo C, Aponte C, Moreno A, Domínguez MT, Gómez-Aparicio L, et al. Protected wading bird species threaten relict centenarian cork oaks in Mediterranean Biosphere Reserve: a conservation management conflict. Biol Conserv. 2011;144:764–771. https://doi.org/10.1016/j.biocon.2010.11.007

Fedriani JM, Garcia LV, Sánchez ME, Calderon J, Ramo C. Long-term impact of protected colonial birds on a jeopardized cork oak population: conservation bias leads to restoration failure. J Appl Ecol. 2017;54:450–458. https://doi.org/10.1111/1365-2664.12672

Fedriani JM, Garrote PJ, del Mar Delgado M, Penteriani V. Subtle gardeners: inland predators enrich local topsoils and enhance plant growth. PLoS One. 2015;10(9):e0138273. https://doi.org/10.1371/journal.pone.0138273

Żółkoś K, Meissner W. The effect of grey heron (Ardea cinerea L.) colony on the surrounding vegetation and the biometrical features of three undergrowth species. Pol J Ecol. 2008;56:65–74.

Matuszkiewicz W. Przewodnik do oznaczania zbiorowisk roślinnych Polski. Warszawa: Wydawnictwo Naukowe PWN; 2002.

Kondracki J. Geografia regionalna Polski. Warszawa: Wydawnictwo Naukowe PWN; 2009.

Solon J, Borzyszkowski J, Bidłasik M, Richling A, Badora K, Balon J, et al. Physico-geographical mesoregions of Poland: verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr Pol. 2018;91(2):143–170. https://doi.org/10.7163/GPol.0115

Shepherd M, Bhogal A. Regular applications of poultry litter to a sandy arable soil: effects on nitrate leaching and nitrogen balance. J Sci Food Agric. 1998;78:19–29. https://doi.org/10.1002/(SICI)1097-0010(199809)78:1%3C19::AID-

JSFA81%3E3.0.CO;2-L

Dobrzański B, Uziak S, Klimowicz Z, Melke J. Badanie gleb w laboratorium i w polu. Przewodnik do ćwiczeń z gleboznawstwa dla studentów biologii i geografii. Lublin: Wydawnictwo UMCS; 1987.

Polski Komitet Normalizacyjny. Jakość wody – oznaczanie azotu azotynowego i azotanowego oraz ich sumy metodą analizy przepływowej (CFA i FIA) z detekcją spektrometryczną PN-EN ISO13395. Warszawa: Polski Komitet Normalizacyjny; 2001.

Polski Komitet Normalizacyjny. Jakość wody – oznaczanie azotu amonowego metodą analizy przepływowej (CFA i FIA) z detekcją spektrometryczną PN-EN ISO 11732. Warszawa: Polski Komitet Normalizacyjny; 2007.

McIntyre S. Lavorel S, Tremont RM. Plant life-history attributes: their relationship in disturbance response in herbaceous vegetation. J Ecol. 1995;83:31–44. https://doi.org/10.2307/2261148

Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C. et al. Functional traits explain variation in plant life history strategies. Proc Natl Acad Sci USA. 2014;111:740–745. https://doi.org/10.1073/pnas.1315179111

Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, et al. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol. 2008;96:1266–1274. http://doi.org/10.1111/j.1365-2745.2008.01430.x

Seed Information Database – SID. Version 7.1 [Internet]. 2018 [cited 2018 Sep 25]. Available from: http://data.kew.org/sid/

Grime JP, Hodgson JG, Hunt R. Comparative plant ecology. A functional approach to common British species. London: Chapman & Hall; 1986.

Hintze C, Heydel F, Hoppe C, Cunze S, König A, Tackenberg O. D3: The Dispersal and Diaspore Database – baseline data and statistics on seed dispersal. Perspect Plant Ecol Evol Syst. 2013;15(3):180–192 https://doi.org/10.1016/j.ppees.2013.02.001

Zarzycki K, Trzcińska-Tacik H, Szeląg Z, Wołek J, Korzeniak U. Ecological indicator values of vascular plants of Poland. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences; 2002.

Milberg P, Andersson L, Thompson K. Large seeded species are less dependent on light for germination than small-seeded ones. Seed Sci Res. 2000;10:99–104. https://doi.org/10.1017/S0960258500000118

Jankowska-Błaszczuk M, Davis MI. Impact of red: far red ratios on germination of temperate forest herbs in relation to shade tolerance, seed mass and persistence in the soil. Funct Ecol. 2007;21:1055–1062. https://doi.org/10.1111/j.1365-2435.2007.01328.x

StatSoft, Inc. STATISTICA: data analysis software system. Version 12 [Software]. 2014. Available from: http://www.statsoft.com

Stanisz A. Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny. Kraków: StatSoft Polska; 2006.

Kovach WL. MVSP – A MultiVariate Statistical Package for Windows, ver. 3.21. Pentraeth: Kovach Computing Services; 2012.

Sekercioglu CH. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J Ornithol. 2012;153(1 suppl):S153–S161. https://doi.org/10.1007/s10336-012-0869-4

Kosicki JZ, Sparks TH, Tryjanowski P. House sparrows benefit from the conservation of white storks. Naturwissenschaften. 2007;94:412–415. https://doi.org/10.1007/s00114-006-0207-x

Rodríguez A, Rodríguez B, Rumeu B, Nogales M. Seasonal diet of the grey heron Ardea cinerea on an oceanic island (Tenerife, Canary Islands): indirect interaction with wild seed plants. Acta Ornithol. 2007;42(1):77–87. https://doi.org/10.3161/068.042.0102

Casas-Crivillé A, Valera F. The European bee-eater (Merops apiaster) as an ecosystem engineer in arid environments. J Arid Environ. 2005;60:227–238. https://doi.org/10.1016/j.jaridenv.2004.03.012

Borkowska L, Królak E, Kasprzykowski Z, Kaczorowski P. The influence of Corvus frugileus nesting on soil parameters and plant composition in poor and fertile habitats. Landscape Ecol Eng. 2015;11:161–167. https://doi.org/10.1007/s11355-014-0256-9

Ishida A. Effects of the common cormorant, Phalocrocorax carbo, on evergreen forests in two nest sites at Lake Biwa, Japan. Ecol Res. 1996;11(2):193–200. https://doi.org/10.1007/BF02347685

Onuf CP, Teal JM, Valiela I. Interactions of nutrients, plant growth and herbivory in a mangrove ecosystem. Ecology. 1977;58(3):514–526. https://doi.org/10.2307/1939001

Żelichowska H. Czapla siwa Ardea cinerea L. In: Internetowy atlas ptaków [Internet]. 2017 [cited 2017 May 17]. Available from: http://www.bird-watching.pl/index.php?/category/16

Forbes LS. Coloniality in herons: Lack’s predation hypothesis reconsidered. Colonial Waterbirds. 1989;12(1):24–29. https://doi.org/10.2307/1521308

Ward P, Zahavi A. The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis. 1973;115(4):517–534. https://doi.org/10.1111/j.1474-919X.1973.tb01990.x

van Vessem J, Draulans D. The adaptive significance of colonial breeding in the grey heron Ardea cinerea: inter- and intra-colony variability in breeding success. Ornis Scandinavica. 1986;17(4):356–362. https://doi.org/10.2307/3676823

Marion L. Territorial feeding and colonial breeding are not mutually exclusive: the case of the grey heron (Ardea cinerea). J Anim Ecol. 1989;58:693–710. https://doi.org/10.2307/4857

Matuszkiewicz W, Sikorski P, Szwed W, Danielewicz W, Kiciński P, Wierzba M. Przegląd zespołów leśnych występujących w Polsce. In: Matuszkiewicz W, Sikorski P, Szwed W, Wierzba M, editors. Zbiorowiska roślinne Polski – ilustrowany przewodnik. Lasy i zarośla. Warszawa: Wydawnictwo Naukowe PWN; 2012.

Lambers H, Chapin FS III, Pons TL. Plant physiological ecology. 2nd ed. New York, NY: Springer; 2008. https://doi.org/10.1007/978-0-387-78341-3

Green AJ, Elmberg J, Lovas-Kiss Á. Beyond scatter-hoarding and frugivory: European corvids as overlooked vectors for a broad range of plants. Front Ecol Evol. 2019;7:133. https://doi.org/10.3389/fevo.2019.00133

van Leeuwen CHA, Lovas-Kiss Á, Overgård M, Green AJ. Great cormonants reveal overlooked secondary dispersal of plants and invertebrates by piscivorous waterbirds. Biol Lett. 2017;13:20170406. https://doi.org/10.1098/rsbl.2017.0406

Lovas-Kiss Á, Sanchez MI, Molnár AV, Valls L, Armengol X, Mesquita-Joanes F, et al. Crayfish invasion facilitates dispersal of plants and invertebrates by gulls. Freshw Biol. 2018;63:392–404. https://doi.org/10.1111/fwb.13080

Lovas Kiss Á, Vizi B, Vincze O, Molnár AV, Green AJ. Endozoochory of aquatic ferns and angiosperms by mallards in Central Europe. J Ecol. 2018;106:1714–1723. https://doi.org/10.1111/1365-2745.12913

Jakubas D, Mioduszewska A. Diet composition and food consumption of the grey heron (Ardea cinerea) from breeding colonies in northern Poland. Eur J Wildl Res. 2005;51:191–198. https://doi.org/10.1007/s10344-005-0096-x