Heterogeneous patterns of genetic variation at nuclear genes and quantitative traits in a Scots pine provenance trial

Anna Maria Hebda, Witold Wachowiak

Abstract


We studied the genetic variation in a set of nuclear genes analyzed from 16 populations of Scots pine derived from a 50-year-old provenance trial in Poland. At the same set of loci, the pattern of genetic variation was compared to several reference populations from a latitudinal gradient in Northern and Central Europe. Similar levels of nucleotide diversity were observed between the defined groups of Polish populations representing three climatic regions (πtotal = 0.0040–0.0051) in comparison with the reference samples (πtotal = 0.0054–0.0058). Polish populations showed minor but heterogeneous patterns of genetic variation between regional groups (FST up to 6%), which were caused by differentiation at specific loci. When outlier loci were excluded from between group comparisons, there were no differences between the Polish populations. Loci related to glycosyltransferase and laccase were identified as outliers, and were correlated with phenotypic differentiation using mixed-linear models. Moreover, these genes were also found as being potentially under selection across the Scots pine distribution range as the patterns of nucleotide variation correlated with latitude and altitude of the maternal stands. The provenance trial measurements have characterized a set of growth and developmental traits over 50 years and forms a suitable experimental system for detailed genetic studies.

Keywords


provenance trial; sequence variation; natural selection; candidate genes; genetic correlation

Full Text:

PDF

References


Wachowiak W, Balk P, Savolainen O. Search for nucleotide diversity patterns of local adaptation in dehydrins and other cold-related candidate genes in Scots pine (Pinus sylvestris L.). Tree Genet. Genomes. 2009;5:117–132. https://doi.org/10.1007/s11295-008-0188-3

Kujala ST, Savolainen O. Sequence variation patterns along a latitudinal cline in Scots pine (Pinus sylvestris): signs of clinal adaptation? Tree Genet Genomes. 2012;8:1451–1467. https://doi.org/10.1007/s11295-012-0532-5

Wójkiewicz B, Wachowiak W. Substructuring of Scots pine in Europe based on polymorphism at chloroplast microsatellite loci. Flora. 2016;220:142–149. https://doi.org/10.1016/j.flora.2016.03.005

Sebastiani F, Pinzauti F, Kujala ST, González-Martínez SC, Vendramin GG. Novel polymorphic nuclear microsatellite markers for Pinus sylvestris L. Conserv Genet Resour. 2012;4:231–234. https://doi.org/10.1007/s12686-011-9513-5

Petit R, Aguinagalde I, Beaulieu J, Bittkau C, Brewer S, Cheddadi R, et al. Glacial refugia: hotspots but not melting pots of genetic diversity. Science. 2003;300:1563–2035. https://doi.org/10.1126/science.1083264

Krakau UK, Liesebach M, Aronen T, Lelu-Walter MA, Schneck V. Scots pine (Pinus sylvestris L.). In: Pâques LE, editor. Forest tree breeding in Europe. Dordrecht: Springer; 2013. p. 267–323. (Managing Forest Ecosystems; vol 25). https://doi.org/10.1007/978-94-007-6146-9

Pyhäjärvi T, Salmela MJ, Savolainen O. Colonization routes of Pinus sylvestris inferred from distribution of mitochondrial DNA variation. Tree Genet Genomes. 2008;4(2):247–254. https://doi.org/10.1007/s11295-007-0105-1

Belletti P, Ferrazzini D, Piotti A, Monteleone I, Ducci F. Genetic variation and divergence in Scots pine (Pinus sylvestris L.) within its natural range in Italy. Eur J For Res. 2012;131(4):1127–1138. https://doi.org/10.1007/s10342-011-0584-3

Excoffier L, Ray N. Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol. 2008;23:347–351. https://doi.org/10.1016/j.tree.2008.04.004

Frichot E, Schoville SD, de Villemereuil P, Gaggiotti OE, François O. Detecting adaptive evolution based on association with ecological gradients: orientation matters! Heredity. 2015;115:22–28. https://doi.org/10.1038/hdy.2015.7

Burczyk J, DiFazio SP, Adams WT. Gene flow in forest trees: how far do genes really travel? For Genet. 2004;11(2–3):1–14.

Varis S, Pakkanen A, Galofre A, Pulkkinen P. The extent of south-north pollen transfer in Finnish Scots pine. Silva Fennica. 2009;43:717–726. https://doi.org/10.14214/sf.168

Wachowiak W. Relacje genetyczne pomiędzy polskimi i referencyjnymi populacjami sosny zwyczajnej (Pinus sylvestris L.) z Europy w analizie polimorfizmu sekwencji nukleotydowych loci nDNA. Sylwan. 2015;159:53–61.

Savolainen O. Guidelines for gene conservation based on population genetics. In: Krishnapillay B, Soepadmo E, Arshad NL, Wong A, Appanah S, Chik SW, et al., editors. Forest and society: the role of reaserch. XXI IUFRO World Congress; 2000 Oct 7–12; Kuala Lumpur, Malaysia. Vienna: IUFRO; 2000. p. 100–109.

Mason WL, Alía R. Current and future status of Scots pine (Pinus sylvestris) forests in Europe. Investigación Agraria, Sistemas y Recursos Forestales. 2000;1:317–335.

Write J, Bull W. Geographic variation in Scots pine. Silvae Genet. 1963;12:1–40.

Giertych M, Oleksyn J. Studies on genetic variation in Scots pine (Pinus sylvestris L.) coordinated by IUFRO. Silvae Genet. 1992;41:133–143.

Eriksson G. Pinus sylvestris recent genetic research. Uppsala: Swedish University of Agricultural Sciences; 2008.

Barzdajn W, Kowalkowski W, Chmura DJ. Variation in growth and survival among European provenances of Pinus sylvestris in a 30-year-old experiment. Dendrobiology. 2016;75:67–77. https://doi.org/10.12657/denbio.075.007

Savolainen O, Kärkkäinen K. Effect of forest management on gene pools. New For (Dordr). 1992;6:329–345. https://doi.org/10.1007/978-94-011-2815-5_17

Burczyk J. Systemy krzyżowania drzew leśnych. Bydgoszcz: Wydawnictwo Uczelniane WSP; 1998.

Kosińska J, Lewandowski A, Chałupka W. Genetic variability of Scots pine maternal populations and their progenies. Silva Fennica. 2007;41(1):5–12. https://doi.org/10.14214/sf.304

Cunningham SC, Mac Nally R, Baker PJ, Cavagnaro TR, Beringer J, Thomson JR, et al. Balancing the environmental benefits of reforestation in agricultural regions. Perspect Plant Ecol Syst. 2015;17(4):301–317. https://doi.org/10.1016/j.ppees.2015.06.001

Plomion C, Cooke J, Richardson T, Mackay J, Tuskan G. Report on the forest trees workshop at the plant and animal genome conference. Comp Funct Genomics. 2003;4:229–238. https://doi.org/10.1002/cfg.262

Kujala ST, Knürr T, Kärkkäinen K, Neale DB, Sillanpää MJ, Savolainen O. Genetic heterogeneity underlying variation in a locally adaptive clinal trait in Pinus sylvestris revealed by a Bayesian multipopulation analysis. Heredity. 2016;118(5):413–423. https://doi.org/10.1038/hdy.2016.115

Groover A, Devey M, Fiddler T, Lee J, Megraw R, Mitchel-Olds T, et al. Identification of quantitative trait loci influencing wood specific gravity i n an outbred pedigree of Loblolly pine. Genetics. 1994;138:1293–1300.

Hurme P, Repo T, Savolainen O, Pääkkönen T. Climatic adaptation of bud set and frost hardiness in Scots pine (Pinus sylvestris). Can J For Res. 1997;27:716–723. https://doi.org/10.1139/x97-052

Jermstad KD, Bassoni DL, Wheeler NC, Anekonda TS, Aitken SN, Adams WT, et al. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir. II. Spring and fall cold-hardiness. Theor Appl Genet. 2001;102:1152–1158. https://doi.org/10.1007/s001220000506

Jermstad KD, Bassoni DL, Jech KS, Ritchie GA, Wheeler NC, Neale DB. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir. III. Quantitative trait loci-by-environment interactions. Genetics. 2003;165:1489–506.

Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, et al. Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theor Appl Genet. 2002;104:214–222. https://doi.org/10.1007/s001220100697

Sewell MM, Neale DB. Mapping quantitative traits in forest trees. In: Jain SM, Minocha SC, editors. Molecular biology of woody plants. Dordrecht: Springer; 2000. p. 407–423. (Forestry Sciences; vol 64). https://doi.org/10.1007/978-94-017-2311-4_17

Wheeler NC, Jermstad KD, Krutovsky K, Aitken SN, Howe GT, Krakowski J, et al. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir. IV. Cold-hardiness QTL verification and candidate gene mapping. Mol Breed. 2005;15:145–156. https://doi.org/10.1007/s11032-004-3978-9

Salmela MJ, Cavers S, Cottrell JE, Iason GR, Ennos RA. Spring phenology shows genetic variation among and within populations in seedlings of Scots pine (Pinus sylvestris L.) in the Scottish Highlands. Plant Ecol Divers. 2013;6:523–536. https://doi.org/10.1080/17550874.2013.795627

Gion JM, Rech P, Grima-Pettenati J, Verhaegen D, Plomion C. Mapping candidate genes in Eucalyptus with emphasis on lignification genes. Mol Breed. 2000;6:441–449. https://doi.org/10.1023/A:1026552515218

Neale DB, Sewell MM, Brown GR. Molecular dissection of the quantitative inheritance of wood property traits in loblolly pine. Ann For Sci. 2002;59:595–605. https://doi.org/10.1051/forest:2002045

Wright SI, Gaut BS. Molecular population genetics and the search for adaptive evolution in plants. Mol Biol Evol. 2005;22:506–519. https://doi.org/10.1093/molbev/msi035

Howe GT, Aitken SN, Neale DB, Jermstad KD, Wheeler NC, Chen THH. From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can J Bot. 2003;81:1247–1266. https://doi.org/10.1139/B03-141

Savolainen O, Bokma F, Knürr T, Kärkkäinen K, Pyhäjärvi T, et al. Adaptation of forest trees to climate change. In: Koskela J, Buck A, Teissier du Cros E, editors. Climate change and forest genetic diversity: implications for sustainable forest management in Europe. Rome: Bioversity International; 2007. p. 19–30.

Ingvarsson PK, Garcia MV, Luquez V, Hall D, Jansson S. Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 locus in European aspen (Populus tremula, Salicaceae). Genetics. 2008;178:2217–2226. https://doi.org/10.1534/genetics.107.082354

Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, et al. Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics. 2009;182:1289–1302. https://doi.org/10.1534/genetics.109.102350

Ma XF, Hall D, Onge KRS, Jansson S, Ingvarsson PK. Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway. Genetics. 2010;186:1033–1044. https://doi.org/10.1534/genetics.110.120873

Prunier J, Pelgas B, Gagnon F, Desponts M, Isabel N, Beaulieu J, et al. The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce. BMC Genomics. 2013;14:368. https://doi.org/10.1186/1471-2164-14-368

Hebda A, Wachowiak W, Skrzyszewski J. Long-term growth performance and productivity of Scots pine (Pinus sylvestris L.) populations. Acta Soc Bot Pol. 2017;86:3521. https://doi.org/10.5586/asbp.3521

Hebda A, Wójkiewicz B, Wachowiak W. Genetic characteristics of Scots pine in Poland and reference populations based on nuclear and chloroplast microsatellite markers. Silva Fennica. 2017;51(2):1721. https://doi.org/10.14214/sf.1721

Hebda A, Skrzyszewski J, Wachowiak W. Zróżnicowanie fenotypowe i zmienność tła genetycznego polskich proweniencji sosny zwyczajnej. Sylwan. 2017;161(4):277–286.

Sabor J. Zmienność wewnątrzgatunkowa drzew leśnych. Sosna zwyczajna i świerk pospolity. In: Saobr J, editor. Elementy genetyki i hodowli selekcyjnej drzew leśnych. Warszawa: CILP; 2006. p. 127–142.

Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. https://doi.org/10.1093/bioinformatics/btp187

Nei M. Molecular evolutionary genetics. New York, NY: Columbia University Press; 1987. https://doi.org/10.7312/nei-92038

Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–595.

Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:693–709.

Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–1370. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x

Excoffier L, Lischer HEL. ARLEQUIN suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

Corander J, Tang J. Bayesian analysis of population structure based on linked molecular information. Math Biosci. 2007;205:19–31. https://doi.org/10.1016/j.mbs.2006.09.015

Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38:203–208. https://doi.org/10.1038/ng1702

González-Martínez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB. Association genetics in Pinus taeda L. I. Wood property traits. Genetics. 2007;175:399–409. https://doi.org/10.1534/genetics.106.061127

Beaulieu J, Doerksen T, Boyle B, Clément S, Deslauriers M, Beauseigle S, et al. Association genetics of wood physical traits in the conifer white spruce and relationships with gene expression. Genetics. 2011;188:197–214. https://doi.org/10.1534/genetics.110.125781

Guerra FP, Wegrzyn JL, Sykes R, Davis MF, Stanton BJ, Neale DB. Association genetics of chemical wood properties in black poplar (Populus nigra). New Phytol. 2013;197:162–176. https://doi.org/10.1111/nph.12003

StatSoft. STATISTICA (data analysis software system). Version 10.0 [Software]. Tulusa, OK: StatSoft; 2011.

Pyhäjärvi T, García-Gil MR, Knürr T, Mikkonen M, Wachowiak W, Savolainen O. Demographic history has influenced nucleotide diversity in European Pinus sylvestris populations. Genetics. 2007;177:1713–1172. https://doi.org/10.1534/genetics.107.077099

Heuertz M, de Paoli E, Källman T, Larsson H, Jurman I, Morgante M, et al. Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst)]. Genetics. 2006;174:2095–2105. https://doi.org/10.1534/genetics.106.065102

Wachowiak W, Wόjkiewicz B, Cavers S, Lewandowski A. High genetic similarity between Polish and North European Scots pine (Pinus sylvestris L.) populations at nuclear gene loci. Tree Genet Genomes. 2014;10:1015–1025. https://doi.org/10.1007/s11295-014-0739-8

González-Díaz P, Jump AS, Perry A, Wachowiak W, Lapshina E, Cavers S. Ecology and management history drive spatial genetic structure in Scots pine. For Ecol Manage. 2017;400:68–76. https://doi.org/10.1016/j.foreco.2017.05.035

Fonder W, Załęski A, Matras J. Leśna baza nasienna w Polsce. Warszawa: Dyrekcja Generalna Lasów Państwowych; 2007.

Białobok S. Ochrona. In: Białobok S, Boratyński A, Bugała W, editors. Biologia sosny zwyczajnej. Poznań-Kórnik: Sorus; 1993. p. 459–496.

Jaworski A. Sosna zwyczajna. Pinus sylvestris L. In: Jaworski A, editor. Charakterystyka hodowli drzew i krzewów leśnych. Tom III. Hodowla lasu. Warszawa: Powszechne Wydawnictwo Rolnicze i Leśne; 2011. p. 19–85.

Hansen SF, Harholt J, Oikawa A, Scheller HV. Plant glycosyltransferases beyond CAZy: a perspective on DUF families. Front Plant Sci. 2012;3:59. https://doi.org/10.3389/fpls.2012.00059

Richardson A, Duncan J, McDougall G. Oxidase activity in lignifying xylem of a taxonomically diverse range of trees: identification of a conifer laccase. Tree Physiol. 2000;20:1039–1047. https://doi.org/10.1093/treephys/20.15.1039

Dillon SK, Nolan M, Li W, Bell C, Wu HX, Southerton SG. Allelic variation in cell wall candidate genes affecting solid wood properties in natural populations and land races of Pinus radiata. Genetics. 2010;185:1477–1487. https://doi.org/10.1534/genetics.110.116582

Huang J, Pang C, Fan S, Song M, Yu J, Wei H, et al. Genome-wide analysis of the family 1 glycosyltransferases in cotton. Mol Genet Genomics. 2015;290(5):1805–1818. https://doi.org/10.1007/s00438-015-1040-8

Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, Yu HM, et al. The Arabidopsis UDP‐glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J. 2017;89(1):85–103. https://doi.org/10.1111/tpj.13324

Wachowiak W, Trivedi U, Perry A, Cavers S, Perry A. Comparative transcriptomics of a complex of four European pine species. BMC Genomics. 2015;16:234. https://doi.org/10.1186/s12864-015-1401-z




DOI: https://doi.org/10.5586/asbp.3623

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society