Cyanobacterial and green algal assemblages in various tundra habitats in the high Arctic (West Spitsbergen, Norway)

Dorota Lidia Richter, Jan Matuła, Mirosława Pietryka, Bronisław Wojtuń, Adrian Zwolicki, Katarzyna Zmudczyńska-Skarbek, Lech Stempniewicz

Abstract


The diversity of cyanobacteria and algae from various microhabitats in Spitsbergen is comparatively well known. However, the relationships between environmental factors and the structure of microflora communities remain largely unclear. This study was conducted in Hornsund Bay, which exhibits large variability in the physicochemical characteristics of habitats, particularly with regard to the availability of nitrogen and phosphorus. This variability, to a large degree, is caused by seabird colonies, which fertilize nutrient-poor terrestrial ecosystems near their nesting areas. The large variations in ecological conditions and vegetation types in the study area aid assessment of habitats representing different combinations of factors potentially influencing the formation of cyanobacterial and algal assemblages. The aim of this study was to examine the influence of physicochemical parameters on the taxonomic composition and diversity of green algae and cyanobacteria (particularly the coccoid, oscillatorialean, and heterocystous taxa). The study encompassed two groups of habitats – soil surface habitats and water-saturated habitats, both characterized by diverse influences of seabird colonies, vegetation cover, and moisture. Our results showed that taxonomic diversity and composition of cyanobacteria and algae were mainly influenced by P–PO43−, N–NH4+ and Ca2+ (soil surface habitats), and NO3, as well as moisture (index of wetness) and pH (water-saturated habitats). The variability of these physicochemical properties was largely due to the variability of the seabird colony influence. Taken together, our findings aid in understanding the processes of formation of phycoflora assemblages in Arctic tundra.

Keywords


cyanobacteria; green algae; physicochemical parameters; nutrient limitation; Arctic

Full Text:

PDF

References


Broady PA. Taxonomic and ecological investigations of algae on steam-warmed soil on Mt. Erebus, Ross Island, Antarctica. Phycologia. 1984;27:257–271. https://doi.org/10.2216/i0031-8884-23-3-257.1

Broady PA. Broadscale patterns in the distribution of aquatic and terrestrial vegetation at three ice-free regions on Ross Island, Antarctica. High Latitude Limnology. 1989;172:77–95. https://doi.org/10.1007/978-94-009-2603-5_7

Broady PA. Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers Conserv. 1996;5(11):1307–1335. https://doi.org/10.1007/BF00051981

Broady PA. The distribution of terrestrial and hydro-terrestrial algal associations at three contrasting locations in southern Victoria Land, Antarctica. Algol Stud. 2005;118(1):95–112. https://doi.org/10.1127/1864-1318/2006/0118-0095

Howard-Williams C, Vincent WF. Microbial communities in southern Victoria Land streams (Antarctica). I. Photosynthesis. High Latitude Limnology. 1989;172:27–38. https://doi.org/10.1007/978-94-009-2603-5_3

Vincent WF, Downes MT, Castenholz RW, Howard-Williams C. Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur J Phycol. 1993;28(4):213–221. https://doi.org/10.1080/09670269300650321

Beyer L, Bölter M, Seppelt RD. Nutrient and thermal regime, microbial biomass, and vegetation of Antarctic soils in the Windmill Islands region of East Antarctica (Wilkes Land). Arct Antarct Alp Res. 2000;32(1):30–39. https://doi.org/10.2307/1552407

Vincent W. Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci. 2000;12(3):374–385. https://doi.org/10.1017/S0954102000000420

Cavacini P. Soil algae from northern Victoria Land (Antarctica). Polar Biosci. 2001;14:45–60.

Elser J, Komárek O. Ecology of periphyton in a meltwater stream ecosystem in the maritime Antarctic. Antarct Sci. 2003;15(2):189–201. https://doi.org/10.1017/S0954102003001226

Komárek J, Elster J. Ecological background of the cyanobacterial assemblages of the northern part of James Ross Island, NW Weddell Sea, Antarctica. Pol Polar Res. 2008;29(1):17–32.

Komárek O, Komárek J. Diversity and ecology of cyanobacterial microflora of Antarctic seepage habitats: comparison of King George Island, Shetland Islands, and James Ross Island, NW Weddell Sea, Antarctica. In: Seckbach J, Oren A, editors. Microbial mats: modern and ancient microorganisms in stratified systems. Dordrecht: Springer; 2010. p. 515–539. (Cellular Origin, Life in Extreme Habitats and Astrobiology; vol 14). https://doi.org/10.1007/978-90-481-3799-2_27

Skácelová K, Barták M, Coufalík P, Nývlt D, Trnková K. Biodiversity of freshwater algae and cyanobacteria on deglaciated northern part of James Ross Island, Antarctica. A preliminary study. Czech Polar Rep. 2013;3(2):93–106. https://doi.org/10.5817/CPR2013-2-12

Matuła J. Investigations on the algal flora of West Spitsbergen. Acta Universitatis Wratislaviensis. 1982;525:173–194.

Matuła J. Wstępna charakterystyka fykoflory rejonu Bellsundu (Spitsbergen Zachodni). In: Repelewska-Pękalowa J, Pękala K, editors. Plenary session: “Wyprawy geograficzne UMCS w Lublinie na Spitsbergen 1986–1988”; 1988 Apr; Lublin, Poland. Lublin: Instytut Nauk o Ziemi Uniwersytetu Marii Curie-Skłodowskiej w Lublinie; 1989. p. 97–110.

Oleksowicz A, Luścińska M. Occurrence of algae on tundra soils in Oskar II Land, Spitsbergen. Pol Polar Res. 1992;13:131–147.

Oleksowicz A, Luścińska M, Gugnacka-Fiodor W. Charakterystyka florystyczna glonów i mszaków gleb tundrowych Kaffiöyry (Ziemia Oskara II, NW Spitsbergen). Wyniki badań VIII Toruńskiej Wyprawy Polarnej Spitsbergen ‘89. Toruń: Uniwersytet Mikołaja Kopernika; 1993.

Skulberg OM. Terrestrial and limnic algae and cyanobacteria. Part 9. In: Elvebakk A, Prestrud P, editors. A catalogue of Svalbard plants, fungi, algae and cyanobacteria. Oslo: Norsk Polarinstitutt; 1996. (Skrift, vol 198).

Давыдов [Davydov] ДА [DA]. Наземные цианобактерии восточного побережья Грен-фьерда (Западный Шпицберген) [Nazemnye cianobakterii vostochnogo poberezh’ja Gren-f’erda (Zapadnyj Shpicbergen)]. In: Матишов [Matishov] ГГ [GG], Тарасов [Tarasov] ГА [GA], editors. Conference proceedings: “Комплексные исследования природы Шпицбергена [Kompleksnye issledovanija prirody Shpicbergena]”, 5; 2005 Oct 12–14; Мурманск [Murmansk], Россия [Rossija]. Апатиты [Apatity]: Кольский научный центр Российской академии наук [Kol’skij nauchnyj centr Rossijskoj akademii nauk]; 2005. p. 377–382.

Давыдов [Davydov] ДА [DA]. Cyanoprokaryota. In: Королёва [Koroljova] НЕ [NE], Константинова [Konstantinova] НА [NA], Савченко [Savchenko] АН [AN], Белкина [Belkina] ОА [OA], Лихачёв [Lihachjov] АЮ [AJu], Давыдов [Davydov] ДА [DA], et al., editors. Флора и растительность побережья залива Грен-фьорд (архипелаг Шпицберген) [Flora i rastitel’nost’ poberezh’ja zaliva Gren-f’ord (arhipelag Shpicbergen)]. Апатиты [Apatity]: K&M; 2008. p. 93–102.

Davydov DА. Diversity of the Cyanoprokaryota of the Grønfjord western coast (Spitsbergen, Svalbard). Russian Botanical Journal. 2011;96:1409–1420.

Davydov DA. Diversity of the Cyanoprokaryota in polar deserts of Rijpfjorden east coast, North-East Land (Nordaustlandet) Island, Spitsbergen, Algol Stud. 2013;142(1):29–43. https://doi.org/10.1127/1864-1318/2013/0082

Stibal M, Šabacka M, Kastovska K. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol. 2006;52:644–654. https://doi.org/10.1007/s00248-006-9083-3

Matuła J, Pietryka M, Richter D, Wojtuń B. Cyanoprocaryota and algae of Arctic terrestrial ecosystem in the Hornsund area, Spitsbergen. Pol Polar Res. 2007;28:283–315.

Kim GH, Klochkova TA, Han JW, Kang SH, Choi HG, Chung KW, et al. Freshwater and terrestrial algae from Ny-Ålesund and Blomstrandhalvøya Island (Svalbard). Arctic. 2011;64(1):25–31. https://doi.org/10.14430/arctic4077

Komárek J, Kováčik L, Elster J, Komárek O. Cyanobacterial diversity of Petuniabukta, Billefjorden, central Spitsbergen. Pol Polar Res. 2012;33(4):347–368. https://doi.org/10.2478/v10183-012-0024-1

Komárek J. Kováčik L. Schizotrichacean cyanobacteria from central Spitsbergen (Svalbard) Polar Biol. 2013;36(12):1811–1822. https://doi.org/10.1007/s00300-013-1402-9

Pushkareva E, Elster J. Biodiversity and ecological classification of cryptogamic soil crusts in the vicinity of Petunia Bay, Svalbard. Czech Polar Reports. 2013;3:7–18. https://doi.org/10.5817/CPR2013-1-3

Raabová L, Kováčik L. Four aeroterrestrial algae grown at a special substrate of de-glaciated coastal areas of Petuniabukta, Svalbard. Czech Polar Rep. 2013;3(2):157–162. https://doi.org/10.5817/CPR2013-2-16

Mataloni G, Tell G. Microalgal communities from ornithogenic soils at Cierva Point, Antarctic Peninsula. Polar Biol. 2002;25(7):488–491. https://doi.org/10.1007/s00300-002-0369-8

Bonaventura SM, Vinocur A, Allende L, Pizarro H. Algal structure of the littoral epilithon in lentic water bodies at Hope Bay, Antarctic Peninsula. Polar Biol. 2006;29:668–680. https://doi.org/10.1007/s00300-005-0104-3

Komárek J, Elster J, Komárek O. Diversity of the cyanobacterial microflora of the northern part of James Ross Island, NW Weddell Sea, Antarctica. Polar Biol. 2008;31:853–865. https://doi.org/10.1007/s00300-008-0424-1

Richter D, Matuła J, Pietryka M. Cyanobacteria and algae of selected habitats in tundra around Hornsund fiord (West Spitsbergen). Oceanol Hydrobiol Stud. 2009;38:1–6.

Richter D, Pietryka M, Matuła J. Relationship of cyanobacterial and algal assemblages with vegetation in the high Arctic tundra (West Spitsbergen, Svalbard archipelago). Pol Polar Res. 2015;36(3):239–260. https://doi.org/10.1515/popore-2015-0013

Šabacká M, Elster J. Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biol. 2006;30:31. https://doi.org/10.1007/s00300-006-0156-z

Haag RW. Nutrient limitations to plant production in two tundra communities. Can J Bot. 1974;52:103–116. https://doi.org/10.1139/b74-014

Chapin FS III, Fetcher N, Kielland K, Everett KR, Linkins AE. Productivity and nutrient cycling of Alaskan tundra: enhancement by flowing soil water. Ecology. 1988;69:693–702. https://doi.org/10.2307/1941017

Shaver GR, Chapin FS III. Response to fertilization by various plant growth forms in an Alaskan tundra: nutrient accumulation and growth. Ecology. 1980;61:662–675. https://doi.org/10.2307/1937432

Shaver GR, Chapin FS III. Long–term responses to factorial, NPK fertilizer treatment by Alaskan wet and moist tundra sedge species. Ecography. 1995;18(3):259–274. https://doi.org/10.1111/j.1600-0587.1995.tb00129.x

Liengen T, Olsen RA. Nitrogen fixation by freeliving cyanobacteria from different coastal sites in a high Arctic tundra, Spitsbergen. Arct Antarct Alp Res. 1997;29:470–477. https://doi.org/10.2307/1551994

Arnold RJ, Convey P, Hughes KA, Wynn-Williams DD. Seasonal periodicity of physical factors, inorganic nutrients and microalgae in Antarctic fellfields. Polar Biol. 2003;26:396–403. https://doi.org/10.1007/s00300-003-0503-2

Madan NJ, Deacon LJ, Robinson CH. Greater nitrogen and/or phosphorus availability increase plant species’ cover and diversity at a high Arctic polar semidesert. Polar Biol. 2007;30:559–570. https://doi.org/10.1007/s00300-006-0213-7

Stewart KJ, Grogan P, Coxson DS. Nitrogen inputs by associative cyanobacteria across a low arctic tundra landscape. Arc Antarct Alp Res. 2011;43:267–278. https://doi.org/10.1657/1938-4246-43.2.267

Zielke M, Ekker AS, Olsen RA, Spjelkavik S, Solheim B. The influence of abiotic factors on biological nitrogen fixation in different types of vegetation in the high Arctic, Svalbard. Arct Antarct Alp Res. 2002;34(3):293–299. https://doi.org/10.1080/15230430.2002.12003497

Zielke M, Solenheim B, Spjelkaavik S, Olsen R. Nitrogen fixation in the high Arctic: role of vegetation and environmental conditions. Arct Antarct Alp Res. 2005;37(3):372–378. https://doi.org/10.1657/1523-0430(2005)037[0372:NFITHA]2.0.CO;2

Zwolicki A, Zmudczyńska-Skarbek K, Matuła J, Wojtuń B, Stempniewicz L. Differential responses of Arctic vegetation to nutrient enrichment by plankton- and fish-eating colonial seabirds in Spitsbergen. Front Plant Sci. 2016;7:1959. https://doi.org/10.3389/fpls.2016.01959

Nadelhoffer KJ, Giblin A, Shaver GR, Laundre JL. Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology. 1991;72:242–253. https://doi.org/10.2307/1938918

Richter D, Matuła J, Urbaniak J, Waleron M, Czerwik-Marcinkowska J. Molecular, morphological and ultrastructural characteristics of Prasiola crispa (Lightfoot) Kützing (Chlorophyta) from Spitsbergen (Arctic). Polar Biol. 2017;40(2):379–397. http://doi.org/10.1007/s00300-016-1966-2

Skrzypek G, Wojtuń B, Richter D, Jakubas D, Wojczulanis-Jakubas K, Samecka-Cymerman A. Diversification of nitrogen sources in various tundra vegetation types in the high Arctic. PLoS One. 2015;10(9):1–21. https://doi.org/10.1371/journal.pone.0136536

Stempniewicz L. Keystone species and ecosystem functioning. Seabirds in polar ecosystems. Ecological Questions. 2005;6:111–115.

Zmudczyńska K, Olejniczak I, Zwolicki A, Iliszko L, Convey P, Stempniewicz L. Influence of allochtonous nutrients delivered by colonial seabirds on soil collembolan communities on Spitsbergen. Polar Biol. 2012;35:1233–1245. https://doi.org/10.1007/s00300-012-1169-4

Zwolicki A, Zmudczyńska-Skarbek KM, Iliszko L, Stempniewicz L. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol. 2013;36(3):363–372. https://doi.org/10.1007/s00300-012-1265-5

Solheim B, Endala A, Vigstad H. Nitrogen fixation in arctic vegetation and soils from Svalbard, Norway. Polar Biol. 1996;16:35–40. https://doi.org/10.1007/BF02388733

Solheim B, Zielke M. Associations between cyanobacteria and moses. In: Rai AN, Bergman B, Rosmussen U, editors. Cyanobacteria in symbiosis. Dordrecht: Kluwer Academic Publishers; 2002. p. 137–152.

Migała K, Wojtuń B, Szymański W, Muskała P. Soil moisture and temperature variation under different types of tundra vegetation during the growing season: a case study from the Fuglebekken catchment, SW Spitsbergen. Catena. 2017;116:10–18. https://doi.org/10.1016/j.catena.2013.12.007

Hoek C, van den Hoeck H, Mann D, Jahns HM. Algae: an introduction to phycology. Cambridge: Cambridge University Press; 1995.

Komárek J, Anagnostidis K. Cyanoprokaryota 1. Chroococcales. Berlin: Springer Spektrum; 1999. (Süßwasserflora von Mitteleuropa; vol 1).

Komárek J, Anagnostidis K. Cyanoprokaryota 2. Oscillatoriales. Munich: Springer Spektrum; 2005. (Süßwasserflora von Mitteleuropa; vol 19).

Komárek J. Cyanoprokaryota 3. Heterocytous genera. Munich: Springer Spektrum; 2013. [Süßwasserflora von Mitteleuropa; vol 19(3)].

Starmach K. Chlorophyta III. Zielenice nitkowate. Warszawa: PWN; 1972. (Flora Słodkowodna Polski; vol 10).

Komárek J, Fott B. Chlorophyceae (Grünalgen). Ordnung: Chlorococcales. In: Huber-Pestalozzi G, editor. Das Phytoplankton des Süβwassers. Systematik und Biologie. 7 Teil, 1 Hälfte. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung; 1983. p. 1–1044.

Coesel PFM, Meesters KJ. Desmid of the lowlands. Mesotaeniaceae and Desmidiaceae of the European lowlands. Zeist: KNNV Publishing; 2007. https://doi.org/10.1163/9789004277922

ter Braak CJF, Šmilauer P. CANOCO reference manual and users guide to Canoco for Windows: software for canonical community ordination (version 4.5). Ithaca, NY: Microcomputer Power; 2002.

Hill MO, Gauch GH. Detrended correspondence analysis: an improved ordination technique. In: van der Maarel E, editor. Classification and ordination. Dordrecht: Springer; 1980. p. 47–58. (Advances in Vegetation Science; vol 2). https://doi.org/10.1007/978-94-009-9197-2_7

Shannon CE, Weaver W. The mathematical theory of communication. Urbana, IL: University of Illinois Press; 1949.

Zwolicki A, Zmudczyńska-Skarbek K, Richard P, Stempniewicz L. Importance of marine-derived nutrients supplied by planktivorous seabirds to high Arctic tundra plant communities. PLoS One. 2016;11:(5):e0154950. https://doi.org/10.1371/journal.pone.0154950

Komárek O, Komárek J. Diversity of freshwater and terrestrial habitats and their oxyphototroph microflora in the Arctowski Station region, South Shetland Islands. Pol Polar Res. 1999;20(3):259–282.

Mataloni G, Tell G, Wynn-Williams DD. Structure and diversity of soil algal communities from Cierva Point (Antarctic Peninsula). Polar Biol. 2000;23:205–211. https://doi.org/10.1007/s003000050028

Smykla J. Wołek J, Barcikowski A. Zonation of vegetation related to penguin rookeries on King George Island, maritime Antarctic. Arct Antarct Alp Res. 2007;39(1):143–151. https://doi.org/10.1657/1523-0430(2007)39[143:ZOVRTP]2.0.CO;2

Richter D, Pietryka M, Matuła J. The diversity of cyanobacteria and green algae on ecological different type of vegetation in Hornsund area (West Spitsbergen, Svalbard). In: Migała K, Owczarek P, Kasprzak M, Strzelecki M, editors. New perspectives in Polar research. Wrocław: University of Wrocław; 2014. p. 137–162.

Pietryka M, Richter D, Matuła J. Cyanobacterial and algal diversity in the vicinity of two different sea bird colonies in Spitsbergen. Pol Polar Res. 2016;37:269–288. https://doi.org/10.1515/popore-2016-0015

Pietryka M, Richter D, Matuła J. Arctic ecosystems – relations between cyanobacterial assemblages and vegetation (Spitsbergen). Ecological Questions. 2018;29(1):9–20. https://doi.org/10.12775/EQ.2018.001

Bracken MES, Hillebrand H, Borer ET, Seabloom EW, Cebrian J, Cleland EE, et al. Signatures of nutrient limitation and co‐limitation: responses of autotroph internal nutrient concentrations to nitrogen and phosphorus additions. Oikos. 2015;124:113–121. https://doi.org/10.1111/oik.01215

Chapin DM, Bliss LC, Bledsoe LJ. Environmental regulation of nitrogen-fixation in a high arctic lowland ecosystem. Can J Bot. 1991;69:2744–2755. https://doi.org/10.1139/b91-345

Asada T, Warner BG, Aravena R. Nitrogen isotope signature variability in plant species from open peatland. Aquat Bot. 2005;82:297–307. https://doi.org/10.1016/j.aquabot.2005.05.005

Solheim B, Zielke M, Bjerke JW, Rozema J. Effects of enhanced UV-B radiation on nitrogen fixation in arctic ecosystems. Plant Ecol. 2006;182:109–118. https://doi.org/10.1007/978-1-4020-4443-4_8

Stewart KJ, Grogan P, Coxson DS, Siciliano DS. Topography as a key factor driving atmospheric nitrogen exchanges in arctic terrestrial ecosystems. Soil Biol Biochem. 2017;96–112. https://doi.org/10.1016/j.soilbio.2013.12.005

Ogawa RE, Carr JF. The influence of nitrogen on heterocyst production in blue-green algae. Limnol Oceanogr. 1969;14(3):342–351. https://doi.org/10.4319/lo.1969.14.3.0342

Kuo S. Phosphorus. In: Sparks DL, editor. Methods of soil analysis. Part 3. Chemical methods. Madison, WI: Soil Science Society of America; 1996. p. 869–919. (Soil Science Society of America; vol 5).

Sposito G. The chemistry of soils. New York, NY: Oxford University Press; 1989.

Bashkin VN. Modern biogeochemistry. Dordrecht: Kluwer Academic; 2002.




DOI: https://doi.org/10.5586/asbp.3605

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society